Rational Approximation with Varying Weights III

E. B. Saff¹ and P. C. Simeonov²

Department of Mathematics, University of South Florida, Tampa, Florida 33620

Communicated by Vilmos Totik

Received May 20, 1998; accepted in revised form June 17, 1999

Approximation by weighted rationals of the form $w^n r_n$, where $r_n = p_n/q_n$, p_n and q_n are polynomials of degree at most $[\alpha n]$ and $[\beta n]$, respectively, and w is an admissible weight, is investigated on compact subsets of the real line for a general class of weights and given $\alpha \ge 0$, $\beta \ge 0$, with $\alpha + \beta > 0$. Conditions that characterize the largest sets on which such approximation is possible are given. We apply the general theorems to Laguerre and Freud weights. © 2000 Academic Press

1. MAIN RESULTS

The problem of uniform approximation on compact subsets of the real line by weighted rational functions of the form $w^n r_n$, where w is an admissible weight, and r_n is a rational function, was investigated in [1, 7]. Here we further generalize the previous results and we consider applications to Laguerre and Freud weights.

For $n \in \mathbb{N}$, let \mathscr{P}_n denote the space of algebraic polynomials of degree at most *n*. For a compact set *E*, C(E) denotes the space of continuous real-valued functions on *E*. The symbol [\cdot] denotes the greatest integer function.

Let Σ be a closed regular subset of the real line **R** and $w: \Sigma \to [0, \infty)$ be a *strongly admissible weight*, that is, w is continuous on Σ , it is positive on a set of positive capacity, and if Σ contains a neighborhood of the point ∞ , then $|x|w(x) \to 0$ as $|x| \to \infty$, $x \in \Sigma$. Let $\alpha \ge 0$, $\beta \ge 0$ with $\alpha + \beta > 0$ be given numbers.

We shall first consider the problem of characterizing the compact sets $E \subseteq \Sigma$ having the approximation property that every function $f \in C(E)$ is the uniform limit on *E* of a sequence $\{w^n r_n\}_{n=1}^{\infty}$, with $r_n = p_n/q_n$, $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$.

¹ Research supported, in part, by the US National Science Foundation under grant DMS-9801677.

² The research done by this author was in partial fulfillment of the Ph.D. requirements at the University of South Florida.

From previous results from [10, 8] regarding weighted polynomial approximation (the case $\alpha = 1$, $\beta = 0$) it is known that $E \subseteq S_w$, where S_w is the support of an extremal measure μ_w , the unique probability measure that minimizes the weighted energy

$$I_{w}(\mu) := \iint \log \frac{1}{|z - t| w(z) w(t)} \, d\mu(z) \, d\mu(t)$$

over the set $\mathcal{M}(\Sigma)$ of all probability Borel measures μ supported on Σ . It is also known [6, 8], that S_w is a compact set, and the following representation for w(x) holds on S_w :

$$w(x) = \exp(U^{\mu_w}(x) - F_w), \qquad x \in S_w,$$
 (1.1)

where F_w is a constant, and for a compactly supported Borel measure μ the logarithmic potential U^{μ} is defined by

$$U^{\mu}(z) := \int \log \frac{1}{|z-t|} d\mu(t), \qquad z \in \mathbb{C}.$$

In [7, Theorem 1.5], it was shown that representation like (1.1) on an interval I with μ_w replaced by a signed measure $\mu = \mu^+ - \mu^-$ with absolutely continuous μ^{\pm} having densities that behave like $|t-c|^{-1/2}$ at the endpoints c of I allows approximation on I. Thus the largest set E having the approximation property is essentially the largest set E on which w can be written as the exponential of the logarithmic potential of an absolutely continuous signed measure.

Before stating the main results of the paper we introduce some notation.

Let $K \subset \mathbf{R}$ be a compact set of positive logarithmic capacity and ω_K be its equilibrium measure, that is, the measure which minimizes the unweighted logarithmic energy $I_1(\mu)$ over all measures $\mu \in \mathcal{M}(K)$. If ω_K is absolutely continuous with respect to Lebesgue measure, then by f_K we shall denote its density.

Let v be a positive measure supported on K. For $y \in \mathbf{R}$ we define the signed measure

$$\sigma(y) := v - y\omega_K.$$

Let $\sigma(y) = \sigma^+(y) - \sigma^-(y)$ be the Jordan decomposition of $\sigma(y)$ and set

$$p(y) := \|\sigma^+(y)\|$$
 and $n(y) := \|\sigma^-(y)\|$.

Our first theorem combines and extends Theorem 1 of [1] and Theorem 1.5 of [7].

THEOREM 1.1. Let w be a strongly admissible weight defined on a set E which is the union of finitely many closed intervals. Let $\alpha \ge 0$, $\beta \ge 0$ with $\alpha + \beta > 0$ be given numbers. Assume that

$$w(u) = \exp(U^{\nu}(u) + F), \quad u \in E,$$
 (1.2)

343

where F is a constant, dv(t) = v(t) dt on E, and the density v is continuous and nonnegative on Int(E), and at each endpoint c of E,

$$v(t) |t-c|^{1/2} \to l_c < \infty, \qquad t \to c, \quad t \in E.$$

$$(1.3)$$

Let $\sigma(y) = v - y\omega_E$.

First assume that there is a sequence of weighted rationals of the form $w^n p_n/q_n$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$ such that $w^n p_n/q_n \to 1$ as $n \to \infty$ uniformly on E. Then there exists $y \in \mathbf{R}$ with $p(y) \leq \alpha$ and $n(y) \leq \beta$.

Next assume that there exists $y \in \mathbf{R}$ such that $p(y) < \alpha$ and $n(y) < \beta$. Then every function $f \in C(E)$ is the uniform limit on E of a sequence of weighted rationals $\{w^n p_n/q_n\}_{n=1}^{\infty}$ with $p_n \in \mathscr{P}_{\lceil \alpha n \rceil}$ and $q_n \in \mathscr{P}_{\lceil \beta n \rceil}$.

Remark 1.2. If *E* is a compact set with $p(x) = \alpha$ and $n(x) = \beta$ for some *x*, then weighted rational approximation on *E* of functions not vanishing on *E* is not always possible. This is the case for the exponential weight $w(u) = e^u$ on the interval $[0, 2\pi]$. In this case, for $\alpha = \beta = 1$, A. B. J. Kuijlaars has proved that every function $f \in C([0, 2\pi])$ that has at least one zero on $[\pi, 2\pi]$ is approximable. Hence neither of the conditions of Theorem 1.1 is both necessary and sufficient.

It turns out that for certain classes of admissible weights w the conditions of Theorem 1.1 are satisfied on each set $S_{w^{\lambda}}$, $\lambda > 0$.

COROLLARY 1.3. Let $w(u) = \exp(-Q(u))$ be a positive continuous weight defined on a set $\Sigma \subset \mathbf{R}$ that is the union of finitely many closed intervals $\{I_j\}_{j=1}^m$. Assume that on each interval I_j , the external field Q(u) is convex or |u| Q'(u) is increasing, and for some $p \in (1, \infty)$, $w' \in L^p(\Sigma)$. Then w satisfies the conditions of Theorem 1.1. Furthermore, Theorem 1.1 holds on each set $E = S_{w^{\lambda}}, \lambda > 0$.

Conversely, if w is a weight satisfying the conditions of Theorem 1.1 on a set E that is the union of finitely many intervals, then $E = S_{w^{\lambda}}$ for some $\lambda > 0$.

COROLLARY 1.4. Let $w(u) = \exp(-Q(u))$ be an admissible weight defined on a set $\Sigma \subset \mathbf{R}$ that is the union of finitely many intervals, and assume that Qis a real-analytic function on Σ . Then w satisfies the conditions of Theorem 1.1. Furthermore, Theorem 1.1 holds on each set $E = S_{w^{\lambda}}$, $\lambda > 0$. The above results and the representation

$$w(x) = \exp(U^{(1/\lambda)\,\mu_{w\lambda}}(x) - (1/\lambda)\,F_{w\lambda}), \qquad x \in S_{w\lambda} \tag{1.4}$$

which follows from (1.1) suggest that it is important to study weighted rational approximation on the sets $S_{w^{\lambda}}$. Before we state the corresponding approximation problem we mention that by [8, Theorem IV.4.1], ([10, Lemma 5.4])

$$S_{w^{\lambda_1}} \subseteq S_{w^{\lambda_2}}, \quad \text{for} \quad \lambda_1 > \lambda_2 > 0.$$
 (1.5)

Now we state the first approximation problem:

(A1) For given $\alpha \ge 0$ and $\beta \ge 0$ with $\alpha + \beta > 0$ find the largest set $S_{w^{\lambda}}(or, equivalently, the smallest <math>\lambda > 0$) with the property that on every compact set $E \subset \operatorname{Int}(S_{w^{\lambda}})$ every function $f \in C(E)$ is the uniform limit on E of a sequence $\{w^n p_n/q_n\}_{n=1}^{\infty}$ with $p_n \in \mathcal{P}_{[\alpha n]}$ and $q_n \in \mathcal{P}_{[\beta n]}$.

Before stating the next theorem we introduce some notation. For $\lambda > 0$ and $y \in \mathbf{R}$ we define the signed measure

$$\sigma_{\lambda}(y) := \frac{1}{\lambda} \mu_{w^{\lambda}} - y \omega_{\lambda}, \qquad (1.6)$$

where $\omega_{\lambda} := \omega_{S_{\omega\lambda}}$, and we set

$$p_{\lambda}(y) := \|\sigma_{\lambda}^{+}(y)\|, \qquad n_{\lambda}(y) := \|\sigma_{\lambda}^{-}(y)\|.$$
(1.7)

THEOREM 1.5. Let w be a strongly admissible weight defined on a closed and regular set $\Sigma \subseteq \mathbf{R}$. Assume that for every $\lambda > 0$, $S_{w^{\lambda}}$ is the union of finitely many closed intervals, the extremal measure $\mu_{w^{\lambda}}$ is absolutely continuous on $S_{w^{\lambda}}$, its density v_{λ} is continuous and nonnegative on $\operatorname{Int}(S_{w^{\lambda}})$, and at each endpoint c of $S_{w^{\lambda}}$,

$$v_{\lambda}(t) |t-c|^{1/2} \to l_{\lambda}(c) < \infty, \qquad t \to c, \quad t \in S_{w^{\lambda}}.$$
(1.8)

Assume further that $S_{w^{\lambda_1}} \subset S_{w^{\lambda_2}}$ for all $\lambda_1 > \lambda_2 > 0$. In particular this is true if $Q = \log(1/w)$ is real-analytic on Σ , and $v_{\lambda}(c) = 0$ at each endpoint c of $S_{w^{\lambda_1}}$ for all $\lambda > 0$.

Then the infimum of all numbers $\lambda > 0$ such that on every compact set $E \subset S_{w^{\lambda}}$ every function $f \in C(E)$ is the uniform limit on E of a sequence $\{w^n p_n/q_n\}_{n=1}^{\infty}$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$ is the number $\lambda^* = \lambda^*(\alpha, \beta)$ defined by

$$\lambda^*(\alpha, \beta) = \inf \left\{ \lambda > 0 : \exists y \in \mathbf{R} : p_\lambda(y) < \alpha, n_\lambda(y) < \beta \right\}, \tag{1.9}$$

if $\alpha > 0$ and $\beta > 0$, and

$$\lambda^*(\alpha, 0) = \inf \left\{ \lambda > 0 : \exists y \in \mathbf{R} : p_{\lambda}(y) < \alpha, n_{\lambda}(y) = 0 \right\},$$
(1.10)

$$\lambda^*(0,\beta) = \inf \left\{ \lambda > 0 : \exists y \in \mathbf{R} : p_\lambda(y) = 0, n_\lambda(y) < \beta \right\}.$$
(1.11)

Finally we consider approximation by weighted rationals $w^n p_n/q_n$ with $p_n \in \mathscr{P}_{[\alpha n]}, q_n \in \mathscr{P}_{[\beta n]}$ for $\alpha \ge 0$ and $\beta \ge 0$ with a positive sum $\alpha + \beta$ that does not exceed a given number $\gamma > 0$.

Let w be a strongly admissible weight defined on a closed and regular set $\Sigma \subset \overline{\mathbf{R}}$ and assume that w satisfies the conditions of Theorem 1.5. The second approximation problem is stated below:

(A2) For given $\gamma > 0$ find the largest set $S_{w^{\lambda}}$ (equivalently find the smallest $\lambda > 0$) such that there exist $\alpha \ge 0$ and $\beta \ge 0$ with $\alpha + \beta \in (0, \gamma]$ having the property that on every compact set $E \subset \text{Int}(S_{w^{\lambda}})$ every function $f \in C(E)$ is the uniform limit of a sequence of weighted rationals $\{w^n p_n/q_n\}_{n=1}^{\infty}$ with $p_n \in \mathscr{P}_{[\alpha n]}, q_n \in \mathscr{P}_{[\beta n]}$.

For $\lambda > 0$ and $y \in \mathbf{R}$ we set $m_{\lambda}(y) := p_{\lambda}(y) + n_{\lambda}(y)$, where $p_{\lambda}(y)$ and $n_{\lambda}(y)$ are defined in (1.7) and (1.6). Then $m_{\lambda}(y) \leq 1/\lambda + |y|$ and

$$m_{\lambda}(y) = \int |d\sigma_{\lambda}(y)| = \int |(1/\lambda) d\mu_{w^{\lambda}} - y d\omega_{S_{w^{\lambda}}}|$$
$$\geqslant \left| \int |(1/\lambda) d\mu_{w^{\lambda}}| - \int |y d\omega_{S_{w^{\lambda}}}| \right| = |1/\lambda - |y||.$$
(1.12)

From these inequalities we get

$$m_{\lambda} := \inf \{ m_{\lambda}(y) : y \in \mathbf{R} \} = \min \{ m_{\lambda}(y) : y \in [0, 2/\lambda] \}.$$
(1.13)

Let f_{λ} be the equilibrium density for the set $S_{w^{\lambda}}$, and

$$s_{\lambda}(t, y) := \frac{1}{\lambda} v_{\lambda}(t) - y f_{\lambda}(t)$$

be the density of the signed measure $\sigma_{\lambda}(y)$.

THEOREM 1.6. Let $\gamma > 0$ be given and w satisfy the conditions of Theorem 1.5. Assume that for every $\lambda > 0$ and $y \in \mathbf{R}$, $s_{\lambda}(t, y)$ has at most countably many zeros in $S_{w^{\lambda}}$. Then the largest set $S_{w^{\lambda}}$ having the property that for every compact $E \subset \text{Int}(S_{w^{\lambda}})$ every function $f \in C(E)$ is the uniform limit on E of a sequence of weighted rationals $\{w^n p_n/q_n\}_{n=1}^{\infty}$ with $p_n \in \mathcal{P}_{[\alpha n]}$ and

 $q_n \in \mathscr{P}_{[\beta n]}$ for some $\alpha \ge 0$ and $\beta \ge 0$ with $\alpha + \beta \in (0, \gamma]$, is the set $S_{w^{\lambda(\gamma)}}$, where $\lambda(\gamma) \in (0, 1]$ is the solution of the equation

$$m_{\lambda} = \gamma. \tag{1.14}$$

2. PROOFS

Proof of Theorem 1.1. The proof of the necessity part of the theorem is the same as the proof of Lemma 5 of [1].

The sufficiency part follows from Theorem 1.5 in [7] and Lemma 4.4 in [9]. It is known that for a set $E = \bigcup_{j=1}^{m} [a_j, b_j]$ with $a_1 < b_1 < a_2 < \cdots < a_m < b_m$ the equilibrium distribution ω_E has the form

$$d\omega_E(t) = f_E(t) dt = \frac{|S(t)|}{\pi \sqrt{|R(t)|}} dt, \quad t \in E,$$
 (2.1)

where

$$R(t) = \prod_{j=1}^{m} ((t - a_j)(t - b_j)) \quad \text{and} \quad S(t) = \prod_{j=1}^{m-1} (t - y_j)$$

for some $y_j \in (b_j, a_{j+1}), j = 1, ..., m-1$ (see, for example, [9, Lemma 4.4]). From (2.1) we see that at the endpoints of *E*, the density $f_E(t)$ has the same behavior as the density v(t) and the result follows from Theorem 1.5 of [7].

Proof of Corollary 1.3. Since $w^{\lambda} = \exp(-\lambda Q)$, for $\lambda > 0$ the external field for w^{λ} has the same properties as Q. Hence it is enough to consider w only. By [8, Theorem IV.1.10(d)], the support S_w is the union of intervals $\{J_k\}$ at most one lying in any of the intervals I_j (the components of Σ). Furthermore, if J is one of the intervals J_k , by Theorem IV.1.6(e) of [8] we have

$$\mu_{w|_{I}} = \mu_{w}|_{J} + \mu_{w}|_{(\mathbf{R}\setminus J)},$$

where the bar denotes taking balayage onto J out of $\mathbb{C}\backslash J$. This implies that $S_{w|_J} = J$. Then by [8, Theorem IV.2.4] applied to $w|_J$, and by [8, Corollary II.4.12] according to which the measure $\overline{\mu_w|_{(\mathbf{R}\backslash J)}}$ has continuous density it follows that (1.3) holds for the density of $\mu_{w|_J}$. The representation (1.2) for w on S_w follows from (1.1).

Now suppose that *E* is the union of finitely many intervals, and *w* satisfies the conditions of Theorem 1.1 on *E*. In particular $w(u) = \exp(U^v(u) + F)$, $u \in E$, with density $v = v^+ - v^-$ satisfying (1.3). From (2.1) and (1.3) we

get that for $\gamma > 0$ large enough $(\gamma > \sup\{v^-(t)/f_E(t), t \in E\}), v_1 := v + \gamma f_E > 0$ on *E*. Setting $\lambda := (\|v^+\| + \gamma - \|v^-\|)^{-1} > 0$ and $F_1 := \lambda(F - \gamma \log(1/\operatorname{cap}(E)))$ we obtain

$$w^{\lambda}(u) = \exp(U^{\lambda v_1}(u) + F_1), \qquad u \in E,$$

and then by [8, Theorem I.3.3] we get $S_{w^{\lambda}} = E$ and $\mu_{w^{\lambda}} = \lambda v_1 dt$.

Proof of Corollary 1.4. For a real-analytic external field Q it was shown in [3, Theorem 38] that S_w is the union of finitely many closed intervals, the measure μ_w is absolutely continuous on S_w , and its density satisfies the conditions of Theorem 1.1. The same is true for w^{λ} for any $\lambda > 0$. Thus the corollary follows from Theorem 1.1.

For the proof of Theorem 1.5 we need a lemma.

LEMMA 2.1. Let $E_1 \subset E_2$ be compact sets on the real line. Assume that each E_j , j = 1, 2 is the union of finitely many intervals. Let $\omega_j = \omega_{E_j}$ and f_j denote the equilibrium measure and density for E_j , respectively. Then $f_1 \ge f_2$ on E_1 and for every interval $I \subseteq E_1$,

$$\omega_1(I) > \omega_2(I).$$

Proof. By Lemma 5.5 of [10] (or [8, Theorem IV.1.6(e)]) we have

$$\omega_1 = \overline{\omega_2} = \omega_2|_{E_1} + \omega_2|_{E_2 \setminus E_1} \ge \omega_2|_{E_1},$$

where the bar denotes taking balayage onto E_1 out of $\mathbb{C}\setminus E_1$. Thus $f_1 \ge f_2$ on E_1 . We set $v := \omega_2|_{E_2 \setminus E_1}$.

Now assume that there is an interval $I \subset E_1$ such that $\omega_1(I) = \omega_2(I)$. Then $\overline{v}(I) = 0$. Let *h* be a continuous function on E_1 that vanishes on $E_1 \setminus I$ and is positive on Int(*I*), and let *H* denote the solution of the Dirichlet problem on the domain $D = \overline{\mathbb{C}} \setminus E_1$ with boundary function *h* (see [8, Section I.2]). This function *H* is harmonic on *D* and continuous on $\overline{\mathbb{C}}$, and by the minimum principle, [8, Theorem I.2.4], it is also positive on *D*. By a property of balayage measures, [8, Theorem II.4.1(c)], we have

$$\int H \, d\bar{v} = \int H \, dv$$

which is a contradiction. Indeed the left integral is $\int_{E_1} h \, d\bar{v} = 0$ by the choice of *h*, and the right integral is positive since it is over $E_2 \setminus E_1 \subset D$ where H > 0 and by (2.1) $v' = f_2 > 0$.

Proof of Theorem 1.5. We assume that $\alpha > 0$ and $\beta > 0$, the proof in the other two cases is similar.

First let $\lambda > \lambda^*$ and $E \subset S_{w^{\lambda}}$ be a compact set. Let $f \in C(E)$ and $f_1 \in C(S_{w^{\lambda}})$ be an extension of f to $S_{w^{\lambda}}$. Then there is $y \in \mathbf{R}$ such that $p_{\lambda}(y) < \alpha$ and $n_{\lambda}(y) < \beta$, and by (1.4) and Theorem 1.1, f_1 is uniformly approximable on $S_{w^{\lambda}}$ by weighted rationals $w^n p_n/q_n$ with $p_n \in \mathscr{P}_{[\alpha n]}$, $q_n \in \mathscr{P}_{[\beta n]}$ and so is f on E.

When $\lambda = \lambda^*$ we can verify the approximation property only on compact sets $E \subset \text{Int}(S_{w^{\lambda^*}})$. Indeed let *E* be such set. By Lemma 5.8 of [10] for every $x \in \text{Int}(S_{w^{\lambda^*}})$ there is a $\lambda(x) > \lambda^*$ such that $x \in \text{Int}(S_{w^{\lambda(x)}})$. Then

$$E \subset \bigcup_{x \in E} \operatorname{Int}(S_{w^{\lambda(x)}})$$

and since *E* is compact there is a finite subcover of *E*, $\{\operatorname{Int}(S_{w^{\lambda(x_i)}})\}_{i=1}^{k(E)}$. Let $\lambda := \min\{\lambda(x_i): 1 \le i \le k(E)\}$. Then $\lambda > \lambda^*$, $E \subset S_{w^{\lambda}}$, and as we have already shown every $f \in C(E)$ is uniformly approximable on *E* by weighted rationals $w^n p_n/q_n$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$.

In verifying the converse it is enough to assume that $S_{w^{\lambda_1}} \subset S_{w^{\lambda_2}}$ for all $\lambda_1 > \lambda_2 > 0$. Indeed in the case when w is real-analytic on Σ we have by Lemma 2.3 of [2] for every $\lambda_0 > 0$,

$$\bigcup_{\lambda>\lambda_0} S_{w^{\lambda}} = \big\{ t \in S_{w^{\lambda_0}} : v_{\lambda_0}(t) > 0 \big\},\$$

and since for every $\lambda > 0$, v_{λ} vanishes at the endpoints of $S_{w^{\lambda}}$ we get $S_{w^{\lambda_1}} \subset S_{w^{\lambda_2}}$ for $\lambda_1 > \lambda_2 > 0$. By Theorem IV.4.9 of [8] (or Lemma 5.7 of [10]) with $w := w^{\lambda_2}$, $\lambda := \lambda_1/\lambda_2 > 1$, and $d\mu_{w^{\lambda}} = v_{\lambda} dt$ we have

$$\frac{\lambda_2}{\lambda_1} v_{\lambda_1} \leqslant v_{\lambda_2} |_{S_w \lambda_1} - \left(1 - \frac{\lambda_2}{\lambda_1}\right) f_{S_w \lambda_2} |_{S_w \lambda_1}.$$

$$(2.2)$$

If $\lambda^* = 0$ there is nothing to prove. So assume that $\lambda^* > 0$ and let $\lambda \in (0, \lambda^*)$. In view of Theorem 1.1 it is enough to show that for all $y \in \mathbf{R}$

$$h_{\lambda}(y) := \max\{p_{\lambda}(y), (\alpha/\beta) n_{\lambda}(y)\} > \alpha.$$

Indeed assume that there is y_0 with $h_{\lambda}(y_0) = \alpha$. By definition $p_{\lambda}(y) \ge 0$ is a decreasing function of y and $p_{\lambda}(0) = 1/\lambda > 0$. Similarly $n_{\lambda}(y) \ge 0$ is an increasing function of y and $n_{\lambda}(0) = 0$. Hence $h_{\lambda} := \inf \{h_{\lambda}(y): y \in \mathbf{R}\}$ is attained at unique $y_{\lambda} > 0$ and

$$h_{\lambda} = p_{\lambda}(y_{\lambda}) = (\alpha/\beta) n_{\lambda}(y_{\lambda}). \tag{2.3}$$

Since $\lambda < \lambda^*$ from the definition of λ^* we get

$$\alpha = h_{\lambda}(y_0) \ge h_{\lambda} = \min\{h_{\lambda}(y): y \in \mathbf{R}\} \ge \alpha,$$

that is, $h_{\lambda}(y_0) = h_{\lambda}(y_{\lambda}) = \alpha$. Then $y_0 = y_{\lambda} > 0$ and $p_{\lambda}(y_0) = (\alpha/\beta) n_{\lambda}(y_0) = \alpha$. Let $\lambda_1 \in (\lambda, \lambda^*)$. By (2.2) with $\lambda_2 = \lambda$ and Lemma 2.1, for y > 0 such that

 $p_{\lambda_1}(y) > 0$ we have

$$\frac{1}{\lambda_{1}} v_{\lambda_{1}} - y f_{S_{w^{\lambda_{1}}}} \leq \frac{1}{\lambda} v_{\lambda} |_{S_{w^{\lambda_{1}}}} - \left(\frac{1}{\lambda} - \frac{1}{\lambda_{1}}\right) f_{S_{w^{\lambda}}} |_{S_{w^{\lambda_{1}}}} - y f_{S_{w^{\lambda_{1}}}}$$
$$\leq \frac{1}{\lambda} v_{\lambda} |_{S_{w^{\lambda_{1}}}} - \left(\frac{1}{\lambda} - \frac{1}{\lambda_{1}} + y\right) f_{S_{w^{\lambda}}} |_{S_{w^{\lambda_{1}}}}. \tag{2.4}$$

We integrate (2.4) over $\operatorname{supp}(\sigma_{\lambda_1}^+(y))$. Since $S_{w^{\lambda_1}} \subset S_{w^{\lambda}}$, applying Lemma 2.1 we obtain

$$p_{\lambda_1}(y) < p_{\lambda}(y+1/\lambda-1/\lambda_1). \tag{2.5}$$

We set $y = y_0 - 1/\lambda + 1/\lambda_1 > 0$ for $\lambda_1 \in (\lambda, \lambda^*)$ close enough to λ (so that $1/\lambda - 1/\lambda_1 < y_0/2$), and we obtain

$$p_{\lambda_1}(y_0 - 1/\lambda + 1/\lambda_1) < p_{\lambda}(y_0) = \alpha.$$

Then using the identity $p_{\lambda}(y) - n_{\lambda}(y) = 1/\lambda - y$ we obtain

$$\begin{split} n_{\lambda_1}(y_0-1/\lambda+1/\lambda_1) &= p_{\lambda_1}(y_0-1/\lambda+1/\lambda_1) + y_0-1/\lambda \\ &< p_{\lambda}(y_0) + y_0-1/\lambda = n_{\lambda}(y_0) = \beta. \end{split}$$

We get $h_{\lambda_1}(y_0 - 1/\lambda + 1/\lambda_1) < \alpha$ which contradicts the choice of $\lambda_1 < \lambda^*$. Moreover, we have shown that h_{λ} is a decreasing function of $\lambda > 0$.

We proved that if $\lambda \in (0, \lambda^*)$ then $h_{\lambda}(y) > \alpha$ for all $y \in \mathbf{R}$.

Let $\lambda \in (0, \lambda^*)$ and let $E = S_{w^{\lambda_1}}$ for some $\lambda_1 \in (\lambda, \lambda^*)$. Then the function 1_E (the characteristic function of the set E) is not uniformly approximable on E by weighted rationals $w^n p_n/q_n$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$, because, otherwise we would have by Theorem 1.1 an $y \in \mathbf{R}$ with $h_{\lambda}(y) \leq \alpha$ and as we have shown this is impossible.

Theorem 1.5 is proved.

For the proof of Theorem 1.6 we will need the following lemma.

LEMMA 2.2. Assume that for every $\lambda > 0$ and $y \in \mathbf{R}$ the density $s_{\lambda}(t, y)$ of the signed measure $\sigma_{\lambda}(y)$ has at most countably many zeros in $S_{w^{\lambda}}$. Then the function $m_{\lambda}(y) \in C^{1}(\mathbf{R})$ and there is a unique $y^{*} = y^{*}(\lambda)$ such that $m_{\lambda} = m_{\lambda}(y^{*})$.

Proof. Let $s_{\lambda}^{\pm}(t, y)$ be the densities of $\sigma_{\lambda}^{\pm}(y)$ respectively. It follows from the representation

$$m_{\lambda}(y) = \int_{S_{w^{\lambda}}} |(1/\lambda) \, d\mu_{w^{\lambda}}(t) - y \, d\omega_{\lambda}(t)|$$

that $m_{\lambda}(y) \in C(\mathbf{R})$. Let $y_0 \in \mathbf{R}$ be fixed. By the definition of $m_{\lambda}(y)$,

$$m_{\lambda}(y) - m_{\lambda}(y_{0})$$

$$= \int_{S_{w^{\lambda}}} (s_{\lambda}^{+}(t, y) - s_{\lambda}^{+}(t, y_{0})) dt + \int_{S_{w^{\lambda}}} (s_{\lambda}^{-}(t, y) - s_{\lambda}^{-}(t, y_{0})) dt$$

$$= 2 \int_{S_{w^{\lambda}}} (s_{\lambda}^{+}(t, y) - s_{\lambda}^{+}(t, y_{0})) dt - \int_{S_{w^{\lambda}}} (s_{\lambda}(t, y) - s_{\lambda}(t, y_{0})) dt$$

$$= (y - y_{0}) - 2 \int_{\Delta_{\lambda}^{+}(y) \cap \Delta_{\lambda}^{+}(y_{0})} (y - y_{0}) f_{\lambda}(t) dt$$

$$+ 2 \int_{((\Delta_{\lambda}^{+}(y) \cup \Delta_{\lambda}^{+}(y_{0})) \setminus (\Delta_{\lambda}^{+}(y) \cap \Delta_{\lambda}^{+}(y_{0})))} (s_{\lambda}^{+}(t, y) - s_{\lambda}^{+}(t, y_{0})) dt, \quad (2.6)$$

where $\Delta_{\lambda}^{\pm}(y)$ is the support of $s_{\lambda}^{\pm}(t, y)$, respectively. Let \tilde{y} be the infimum of all $y \ge 0$ such that $s_{\lambda}(t, y)$ has at least one zero in $\operatorname{Int}(S_{w^{\lambda}})$. Since $yf_{\lambda}(t)$ increases with y, then $\Delta_{\lambda}^{+}(y_1) \subseteq \Delta_{\lambda}^{+}(y_2)$ for $y_1 > y_2 \ge 0$ and if we assume that for some $y_1 > y_2 \ge \tilde{y}$, $\Delta_{\lambda}^{+}(y_1) \equiv \Delta_{\lambda}^{+}(y_2)$, then at $t \in \Delta_{\lambda}^{+}(y_1) \cap$ $\Delta_{\lambda}^{-}(y_1)$ we would have

$$v_{\lambda}(t) = \lambda y_1 f_{\lambda}(t) > \lambda y_2 f_{\lambda}(t) = v_{\lambda}(t)$$

which is impossible. Furthermore, $\triangle_{\lambda}^{+}(y) \rightarrow \triangle_{\lambda}^{+}(y_{0})$ in the sense that the Lebesgue measure of the set $(\triangle_{\lambda}^{+}(y) \cup \triangle_{\lambda}^{+}(y_{0})) \setminus (\triangle_{\lambda}^{+}(y) \cap \triangle_{\lambda}^{+}(y_{0}))$ tends to zero as $y \rightarrow y_{0}$. Otherwise there will be a set *E* with positive Lebesgue measure and a number $y_{0} > 0$ such that $E \subseteq \triangle_{\lambda}^{+}(y)$ for all $y \in [0, y_{0})$, but $E \cap \triangle_{\lambda}^{+}(y_{0}) = \emptyset$. Then for $t \in E$ we will have $0 \ge s_{\lambda}(t, y_{0}) = \lim_{y \rightarrow y_{0}} s_{\lambda}(t, y)$ ≥ 0 hence $s_{\lambda}(t, y_{0}) = 0$ which contradicts the assumption that $s_{\lambda}(t, y_{0})$ has countably many zeros in $S_{w^{\lambda}}$.

For $t \notin \triangle_{\lambda}^{+}(y) \cap \triangle_{\lambda}^{+}(y_{0})$ we have

$$|s_{\lambda}^{+}(t, y) - s_{\lambda}^{+}(t, y_{0})| \leq |s_{\lambda}(t, y) - s_{\lambda}(t, y_{0})| = |y - y_{0}| f_{\lambda}(t),$$

and therefore the absolute value of the last integral in (2.6) is at most

$$|y-y_0| \int_{\left(\left(\bigtriangleup_{\lambda}^+(y) \cup \bigtriangleup_{\lambda}^+(y_0)\right) \setminus \left(\bigtriangleup_{\lambda}^+(y) \cap \bigtriangleup_{\lambda}^+(y_0)\right)\right)} f_{\lambda}(t) dt = o(|y-y_0|).$$

Hence from (2.6) we obtain

$$m'_{\lambda}(y_0) = 1 - 2 \int_{\Delta_{\lambda}^+(y_0)} f_{\lambda}(t) dt.$$
 (2.7)

351

Then $m'_{\lambda}(y) \in C(\mathbf{R})$ follows from (2.7) and the fact that $\triangle_{\lambda}^{+}(y)$ continuously changes with y.

For $y \leq \tilde{y}$, $\Delta_{\lambda}^{-}(y) \equiv \emptyset$ and by (2.7), $m'_{\lambda}(y) = -1$, and $m_{\lambda}(y) = p_{\lambda}(y) = 1/\lambda - y$. For $y > \tilde{y}$, $\Delta_{\lambda}^{+}(y)$ decreases with y and by (2.7) we get that $m'_{\lambda}(y)$ increases on (\tilde{y}, ∞) , and $m'_{\lambda}(y) \to 1$ as $y \to \infty$. Then there is a unique $y^* = y^*(\lambda) > \tilde{y}$ such that $m'_{\lambda}(y^*) = 0$ and by (1.13), $m_{\lambda} = m_{\lambda}(y^*)$. Lemma 2.2 is proved.

Proof of Theorem 1.6. We first show that m_{λ} is a decreasing function of $\lambda > 0$. Let $\lambda_1 > \lambda > 0$. By (2.5) we have

$$p_{\lambda_1}(y) < p_{\lambda}(y+1/\lambda-1/\lambda_1), \quad y \ge 0.$$

Since $m_{\lambda}(y) = 2p_{\lambda}(y) + y - 1/\lambda$, for $y \ge 0$ we have

$$m_{\lambda_1}(y) < 2p_{\lambda}(y+1/\lambda - 1/\lambda_1) + y - 1/\lambda_1 = m_{\lambda}(y+1/\lambda - 1/\lambda_1).$$
(2.8)

Then from (1.13) and (2.8) and Lemma 2.2 $(m_{\lambda}(y) \in C(\mathbf{R}))$ we get

$$m_{\lambda_{1}} = \min\{m_{\lambda_{1}}(y): y \in [0, 2/\lambda_{1}]\}$$

< min{ $m_{\lambda}(y + 1/\lambda - 1/\lambda_{1}): y \in [0, 2/\lambda_{1}]\}$
= min{ $m_{\lambda}(y): y \in [1/\lambda - 1/\lambda_{1}, 1/\lambda + 1/\lambda_{1}]\}.$ (2.9)

By the continuity of $m_{\lambda}(y)$ (Lemma 2.2) the right-hand side of (2.9) tends to $\min\{m_{\lambda}(y): y \in [0, 2/\lambda]\} = m_{\lambda}$ as $\lambda_1 \to \lambda$, $\lambda_1 > \lambda$. Hence m_{λ} is rightcontinuous and nondecreasing function of $\lambda > 0$. Now assume that for some $\lambda_2 > \lambda > 0$, $m_{\lambda_2} = m_{\lambda}$. Then for every $\lambda_1 \in (\lambda, \lambda_2]$, $m_{\lambda_1} = m_{\lambda}$. Then (2.9) implies that for every $\lambda_1 \in (\lambda, \lambda_2]$, $m_{\lambda_1} = m_{\lambda} = m_{\lambda}(y_{\lambda})$ for some $y_{\lambda} \in [0, 1/\lambda - 1/\lambda_1) \cup (1/\lambda + 1/\lambda_1, 2/\lambda]$. By Lemma 2.2 this $y_{\lambda} = y^*(\lambda)$ is unique, hence $y_{\lambda} = 0$ or $y_{\lambda} = 2/\lambda$, that is $m'_{\lambda}(0) = 0$ or $m'_{\lambda}(2/\lambda) = 0$. But this is impossible since by (2.7) of Lemma 2.2 and $\Delta_{\lambda}^+(0) = \operatorname{supp}(\sigma_{\lambda}^+(0)) = S_{w^{\lambda}}$ we have $m'_{\lambda}(0) = -1$, and by (1.12) and $m_{\lambda}(0) = 1/\lambda$, $y^*(\lambda) = 2/\lambda$ implies $m_{\lambda} = 1/\lambda$ and $s_{\lambda}(t, 2/\lambda) \leq 0$ on $S_{w^{\lambda}}$, which in view of (2.7) gives $m'_{\lambda}(2/\lambda) = 1$. Hence m_{λ} is a decreasing function of $\lambda > 0$.

Now let $\gamma > 0$ be given. First let $E \subset \text{Int}(S_{w^{\lambda(\gamma)}})$ be a compact set. As in the proof of Theorem 1.5 it follows that there is a $\lambda > \lambda(\gamma)$ such that $E \subseteq S_{w^{\lambda}}$. Moreover,

$$\delta := \gamma - m_{\lambda} = m_{\lambda(\gamma)} - m_{\lambda} > 0,$$

and $m_{\lambda} > 0$ for otherwise $s_{\lambda}(t, y^{*}(\lambda)) = 0$ on $S_{w^{\lambda}}$ which contradicts the assumption concerning the zeros of the functions $s_{\lambda}(t, y)$.

Let $a_{\lambda} := \inf \{ y > 0 : n_{\lambda}(y) > 0 \}$, and $b_{\lambda} := \sup \{ y > 0 : p_{\lambda}(y) > 0 \}$. Then $0 \le a_{\lambda} < b_{\lambda} \le \infty$, because $p_{\lambda}(y)$ and $-n_{\lambda}(y)$ are nonincreasing functions of $y \in \mathbf{R}$, and $m_{\lambda} > 0$. Moreover, $y^*(\lambda) \in [a_{\lambda}, b_{\lambda}]$. Indeed if say $y^*(\lambda) < a_{\lambda}$, then for every $y \in (y^*(\lambda), a_{\lambda})$ we would have $m_{\lambda} = m_{\lambda}(y^*(\lambda)) = p_{\lambda}(y^*(\lambda)) > p_{\lambda}(y) = m_{\lambda}(y)$ which contradicts the definition of m_{λ} . By the continuity of $m_{\lambda}(y)$ and hence that of $p_{\lambda}(y) = (m_{\lambda}(y) - y + 1/\lambda)/2$ and $n_{\lambda}(y) = m_{\lambda}(y) - p_{\lambda}(y)$, we can select $y_0 \in (a_{\lambda}, b_{\lambda})$ with $|p_{\lambda}(y_0) - p_{\lambda}(y^*(\lambda))| \le \delta/4$, and $|n_{\lambda}(y_0) - n_{\lambda}(y^*(\lambda))| \le \delta/4$. Then we set $\alpha := p_{\lambda}(y_0) + \delta/8$ and $\beta := n_{\lambda}(y_0) + \delta/8$. We have $\alpha + \beta \le m_{\lambda} + 3\delta/4 < \gamma$, $p_{\lambda}(y_0) < \alpha$, and $n_{\lambda}(y_0) < \beta$. Hence by Theorem 1.1, every function $f \in C(E)$ is uniformly approximable on E by a sequence of weighted rationals $\{w^n p_n/q_n\}$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$.

Conversely, let $\lambda \in (0, \lambda(\gamma))$. Then $S_{w^{\lambda(\gamma)}} \subset S_{w^{\lambda}}$, and $m_{\lambda} > m_{\lambda(\gamma)} = \gamma$. Consider the compact set $E := S_{w^{\lambda(\gamma)}}$. We recall that under the conditions of the theorem E is the union of finitely many closed intervals. Then the constant function 1 on E is not w-approximable in the sense of (A2). Indeed, assume that there are $\alpha \ge 0$ and $\beta \ge 0$ with $\alpha + \beta \in (0, \gamma]$, and a sequence $\{w^n p_n/q_n\}$ with $p_n \in \mathscr{P}_{[\alpha n]}$ and $q_n \in \mathscr{P}_{[\beta n]}$ that tends to 1 uniformly on E as $n \to \infty$. By Theorem 1.1 there exists $y \in \mathbf{R}$ with $p_{\lambda}(y) \le \alpha$ and $n_{\lambda}(y) \le \beta$. Then $m_{\lambda} \le m_{\lambda}(y) \le \alpha + \beta \le \gamma$ gives a contradiction. Theorem 1.6 is proved.

3. WEIGHTED RATIONAL APPROXIMATION WITH LAGUERRE AND FREUD WEIGHTS

Laguerre weights. The function $w(u) = u^{\theta}e^{-cu}$ with $\theta \ge 0$ and c > 0 defined on $\Sigma = [0, \infty)$ is called Laguerre weight. It is known that ([8], Examples IV.1.18 and IV.5.4)

$$S_w = [a(\theta, c), b(\theta, c)] =: \triangle_{\theta, c}$$
(3.1)

is an interval with endpoints $a(\theta, c) = 1/c(\theta + 1 - \sqrt{2\theta + 1})$ and $b(\theta, c) = 1/c(\theta + 1 + \sqrt{2\theta + 1})$, and the extremal measure μ_w has density

$$v_w(t) = \frac{c}{\pi t} \sqrt{(t - a(\theta, c))(b(\theta, c) - t)}, \qquad t \in \Delta_{\theta, c}.$$
(3.2)

For $\lambda > 0$ we have $w(u)^{\lambda} = u^{\lambda \theta} e^{-\lambda c u}$, the support $S_{w^{\lambda}} = \Delta_{\lambda \theta, \lambda c}$,

$$v_{\lambda}(t) = v_{w^{\lambda}}(t) = \frac{\lambda c}{\pi t} \sqrt{(t-a)(b-t)}, \qquad t \in \Delta_{\lambda} := \Delta_{\lambda\theta, \lambda c},$$

where $a = a(\lambda \theta, \lambda c)$ and $b = b(\lambda \theta, \lambda c)$, and

$$f_{\lambda}(t) = \frac{1}{\pi \sqrt{(t-a)(b-t)}}, \qquad t \in \Delta_{\lambda}$$

is the equilibrium density for the interval \triangle_{λ} .

The approximation problem (A2) for Laguerre weights. Let $\gamma > 0$ be given. To determine m_{λ} for $\lambda > 0$ we consider the equation

$$v_{\lambda}(t) = \lambda y f_{\lambda}(t),$$

which is equivalent to

$$c(t-a)(b-t) = yt$$
 or $ct^2 + t(y-c(a+b)) + cab = 0.$ (3.3)

The formulas for v_{λ} and f_{λ} show that (3.3) has two real solutions $t_{1,2}(y) \in [a, b]$,

$$t_{1,2}(y) = \frac{c(a+b) - y \pm \sqrt{(c(a+b) - y)^2 - 4c^2ab}}{2c}$$
(3.4)

if and only if $y \in [0, c(\sqrt{b} - \sqrt{a})^2] = [0, 2/\lambda]$. For other y we have $m_{\lambda}(y) > m_{\lambda}$. By Lemma 2.2 $m_{\lambda} = m_{\lambda}(y^*)$, where y^* is the unique solution of the equation

$$\int_{t_2(y^*)}^{t_1(y^*)} f_{\lambda}(t) dt = \frac{1}{2}.$$
(3.5)

Changing variables t = (a+b)/2 + s(b-a)/2 in (3.5) we obtain

$$\sin^{-1}(a_1 + a_2) - \sin^{-1}(a_1 - a_2) = \pi/2, \tag{3.6}$$

where

$$a_1 = \frac{-y^*}{c(b-a)}$$
 and $a_2 = \frac{\sqrt{(c(a+b)-y^*)^2 - 4c^2ab}}{c(b-a)}$

We apply the cosine function to both sides of the last equation and simplify to obtain

$$|\sqrt{(1-(a_1+a_2)^2)(1-(a_1-a_2)^2)}| = |a_1^2-a_2^2|.$$

Simplifying further we obtain $2(a_1^2 + a_2^2) = 1$, or equivalently

$$\frac{y^{*2} + ((c(a+b) - y^*)^2 - 4c^2ab)}{c^2(b-a)^2} = \frac{1}{2},$$

which reduces to

$$4y^{*2} - 4c(a+b) y^* + c^2(b-a)^2 = 0.$$

The solutions of the last equation are $y_{1,2}^* = c(a+b\pm 2\sqrt{ab})/2$, and since $a+b=2(\lambda\theta+1)/(\lambda c)$ and $\sqrt{ab}=\theta/c$ (see (3.1)), we have

$$y_2^* = 1/\lambda$$
 and $y_1^* = (2\lambda\theta + 1)/\lambda$.

Since the range of \sin^{-1} is $[-\pi/2, \pi/2]$, Eq. (3.6) implies that $a_1 + a_2 \ge 0$ which is equivalent to $y^* \le (2\lambda\theta + 1)/(\lambda(\lambda\theta + 1))$ and y_2^* only satisfies this condition, unless $\theta = 0$ in which case $y_1^* = y_2^*$. Hence,

$$y^* = y_2^* = c(a+b-2\sqrt{ab})/2 = 1/\lambda.$$
 (3.7)

Next we derive a formula for $m_{\lambda}(y)$ for $y \in [0, 2/\lambda]$. We have $p_{\lambda}(0) = 1/\lambda$ and since $m_{\lambda}(y) = 2p_{\lambda}(y) + y - 1/\lambda$,

$$p'_{\lambda}(y) = (m'_{\lambda}(y) - 1)/2 = -\int_{t_2(y)}^{t_1(y)} f_{\lambda}(t) dt, \qquad (3.8)$$

where we used (2.7). Then with

$$s_{1,2}(y) := (2t_{1,2}(y) - a - b)/(b - a)$$

we obtain

$$p'_{\lambda}(y) = (\sin^{-1}(s_2(y)) - \sin^{-1}(s_1(y)))/\pi.$$
(3,9)

Then

$$p_{\lambda}(y) = 1/\lambda + \int_{0}^{y} p'_{\lambda}(u) \, du = 1/\lambda + (J_{2}(y) - J_{1}(y))/\pi$$

and

$$m_{\lambda}(y) = 1/\lambda + y + 2(J_2(y) - J_1(y))/\pi, \qquad (3.10)$$

where

$$J_{1,2}(y) := \int_0^y \sin^{-1}(s_{1,2}(u)) \, du$$

= $y \sin^{-1}(s_{1,2}(y)) - \int_0^y \frac{us'_{1,2}(u)}{\sqrt{1 - s_{1,2}(u)^2}} \, du$
= $y \sin^{-1}(s_{1,2}(y)) - \int_0^y \frac{ut'_{1,2}(u)}{\sqrt{(t_{1,2}(u) - a)(b - t_{1,2}(u))}} \, du.$ (3.11)

For $t_{1,2}(u)$ from (3.4) we get

$$t'_{1,2}(u) = \frac{\mp t_{1,2}(u)}{c(t_1(u) - t_2(u))}$$
(3.12)

and by (3.3)

$$\sqrt{(t_{1,2}(u)-a)(b-t_{1,2}(u))} = \sqrt{ut_{1,2}(u)/c}.$$
(3.13)

Then by (3.11), (3.12) and (3.13) we obtain

$$J_{2}(y) - J_{1}(y) = y(\sin^{-1}(s_{2}(y)) - \sin^{-1}(s_{1}(y)))$$
$$-\frac{1}{\sqrt{c}} \int_{0}^{y} \frac{\sqrt{u}(\sqrt{t_{1}(u)} + \sqrt{t_{2}(u)})}{t_{1}(u) - t_{2}(u)} du.$$

For the last integral we have by (3.3)

$$\int_{0}^{y} \frac{\sqrt{u}}{\sqrt{t_{1}(u)} - \sqrt{t_{2}(u)}} du = \int_{0}^{y} \frac{\sqrt{u}}{\sqrt{t_{1}(u) + t_{2}(u) - 2\sqrt{t_{1}(u)} t_{2}(u)}} du$$
$$= \int_{0}^{y} \frac{\sqrt{u}}{\sqrt{(a+b) - u/c - 2\sqrt{ab}}} du$$
$$= \sqrt{c} \int_{0}^{y} \frac{\sqrt{u}}{\sqrt{2/\lambda - u}} du =: \frac{\sqrt{c}}{\lambda} A(\lambda y).$$

To compute A(y) we use change of variables $u \rightarrow 2v^2$ and integration by parts

$$A(y) = 4 \int_0^{\sqrt{y/2}} \frac{v^2}{\sqrt{1 - v^2}} dv = -4 \int_0^{\sqrt{y/2}} \sqrt{1 - v^2} dv + 4 \int_0^{\sqrt{y/2}} \frac{1}{\sqrt{1 - v^2}} dv = -4 \sqrt{\frac{y}{2} \left(1 - \frac{y}{2}\right)} - A(y) + 4 \sin^{-1}(\sqrt{y/2}),$$

and so we obtain

$$A(y) = 2\sin^{-1}(\sqrt{y/2}) - \sqrt{y(2-y)}.$$
 (3.14)

Then

$$J_2(y) - J_1(y) = y(\sin^{-1}(s_2(y)) - \sin^{-1}(s_1(y))) - A(\lambda y)/\lambda$$

and for $m_{\lambda}(y)$ from (3.8), (3.9), and (3.10) we obtain

$$m_{\lambda}(y) = 1/\lambda + y - 2y \int_{t_2(y)}^{t_1(y)} f_{\lambda}(t) dt - 2A(\lambda y)/(\lambda \pi).$$
(3.15)

For the minimal mass m_{λ} we get (using (3.5) and (3.14))

$$m_{\lambda} = m_{\lambda}(y^{*}) = m_{\lambda}(1/\lambda) = 2/\lambda - (2/\lambda) \int_{t_{2}(1/\lambda)}^{t_{1}(1/\lambda)} f_{\lambda}(t) dt$$
$$-2A(1)/(\lambda\pi) = 1/\lambda - 2(\pi/2 - 1)/(\lambda\pi) = 2/(\lambda\pi).$$
(3.16)

The quantity m_{λ} decreases from ∞ to m_1 as λ increases from 0 to 1. Then by Theorem 1.6 for a given $\gamma \ge m_1$ the largest interval $\Delta_{\lambda} := \Delta_{\lambda\theta, \lambda c}$ on which approximation by weighted rationals is possible in the sense of (A2) is the interval $\Delta_{\lambda(\gamma)}$, where $\lambda(\gamma) = 2/(\pi\gamma)$.

Freud weights. The function $w(u) = \exp(-\gamma_{\tau} |u|^{\tau})$, with $\tau > 0$ and

$$\gamma_{\tau} = \frac{\Gamma(\tau/2) \Gamma(1/2)}{2\Gamma((\tau+1)/2)},$$

defined on $\Sigma = \mathbf{R}$ is called *Freud weight*. By [8, Theorem IV.5.1], $S_w = [-1, 1]$ and $\mu_{w_s}(t) = s_{\tau}(t) dt$, where

$$s_{\tau}(t) = \frac{\tau}{\pi} \int_{|t|}^{1} \frac{u^{\tau-1}}{\sqrt{u^2 - t^2}} du, \qquad t \in [-1, 1]$$
(3.17)

is the so called Ullman distribution.

The approximation problem (A2) for Freud weights. Let $\lambda > 0$. For $w(u)^{\lambda} = \exp(-\lambda \gamma_{\tau} |u|^{\tau})$ it follows from the definition of the extremal measure that $S_{w^{\lambda}} = [-\lambda^{-1/\tau}, \lambda^{-1/\tau}] =: \Delta_{\lambda}$, and

$$v_{\lambda}(t) = v_{w^{\lambda}}(t) = s_{\tau}(\lambda^{1/\tau}t) \ \lambda^{1/\tau}, \qquad t \in \Delta_{\lambda}.$$

The function s_{τ} is even and as we are going to show later with Lemma 3.3, for $\tau \in [1, 2]$, $s_{\tau}(t)$ is monotone decreasing on [0, 1] and so is $v_{\lambda}(t)$ on $[0, \lambda^{-1/\tau}]$.

We shall restrict ourselves to Freud weights with $\tau \in [1, 2]$ since in this case the monotonicity of s_{τ} allows us to solve the problem completely. For $y \ge 0$ we consider the function

$$s_{\lambda}(t, y) = (1/\lambda) v_{\lambda}(t) - y f_{\lambda}(t), \qquad t \in \Delta_{\lambda},$$

where

$$f_{\lambda}(t) = \frac{1}{\pi \sqrt{\lambda^{-2/\tau} - t^2}}, \qquad t \in \Delta_{\lambda}$$

is the equilibrium density for Δ_{λ} . The equation $s_{\lambda}(t, y) = 0$ has exactly two solutions $t_1(y) > 0$ and $t_2(y) = -t_1(y)$ in Δ_{λ} for $y \in [0, a_{\tau, \lambda})$, where

$$a_{\tau,\lambda} := \frac{v_{\lambda}(0)}{\lambda f_{\lambda}(0)} = \frac{\tau}{\lambda(\tau-1)}.$$

By the proof of Theorem 1.6 and Lemma 2.2 we have

$$m_{\lambda} = \min\{m_{\lambda}(y): y \in [0, a_{\tau, \lambda}]\} = m_{\lambda}(y^*),$$

where $y^* \in [0, a_{\tau, \lambda})$ is the unique solution of the equation

$$\frac{1}{2} = \int_{-t_1(y)}^{t_1(y)} f_{\lambda}(t) dt = \frac{2}{\pi} \sin^{-1}(\lambda^{1/\tau} t_1(y)).$$

Then $\lambda^{1/\tau} t_1(y^*) = \sqrt{2}/2$, and for m_{λ} we obtain

$$m_{\lambda} = m_{\lambda}(y^{*}) = 2p_{\lambda}(y^{*}) + y^{*} - \frac{1}{\lambda}$$

$$= \frac{2}{\lambda} \int_{-t_{1}(y^{*})}^{t_{1}(y^{*})} v_{\lambda}(t) dt - 2y^{*} \int_{-t_{1}(y^{*})}^{t_{1}(y^{*})} f_{\lambda}(t) dt + y^{*} - \frac{1}{\lambda}$$

$$= \frac{2}{\lambda} \int_{-t_{1}(y^{*})}^{t_{1}(y^{*})} v_{\lambda}(t) dt - \frac{1}{\lambda} = \frac{4}{\lambda} \int_{0}^{\sqrt{2}/2} s_{\tau}(u) du - \frac{1}{\lambda}.$$
 (3.18)

To compute the last integral we need a differential equation for $s_{\tau}(t)$. Let $t \in (0, 1)$. With the change of variables $u \to tu_1$ and $u_1 \to 1/u$ we obtain

$$s_{\tau}(t) = \frac{\tau}{\pi} \int_{t}^{1} \frac{u^{\tau-1}}{\sqrt{u^{2}-t^{2}}} du$$
$$= \frac{\tau}{\pi} t^{\tau-1} \int_{1}^{1/t} \frac{u_{1}^{\tau-1}}{\sqrt{u_{1}^{2}-1}} du_{1} = \frac{\tau}{\pi} t^{\tau-1} \int_{t}^{1} \frac{u^{-\tau}}{\sqrt{1-u^{2}}} du.$$
(3.19)

Then

$$s_{\tau}'(t) = \frac{\tau}{\pi} \left((\tau - 1) t^{\tau - 2} \int_{t}^{1} \frac{u^{-\tau}}{\sqrt{1 - u^{2}}} du - t^{\tau - 1} \frac{t^{-\tau}}{\sqrt{1 - t^{2}}} \right)$$

or equivalently

$$ts_{\tau}'(t) = (\tau - 1) s_{\tau}(t) - \frac{\tau}{\pi \sqrt{1 - t^2}}.$$
(3.20)

For $a \in [0, 1]$ using integration by parts and (3.20) we obtain

$$I_{\tau}(a) := \int_{0}^{a} s_{\tau}(t) dt = as_{\tau}(a) - \int_{0}^{a} ts'_{\tau}(t) dt$$
$$= as_{\tau}(a) + \frac{\tau}{\pi} \sin^{-1}(a) - (\tau - 1) I_{\tau}(a),$$

hence

$$I_{\tau}(a) = \frac{a}{\tau} s_{\tau}(a) + \frac{1}{\pi} \sin^{-1}(a).$$
(3.21)

From (3.18) and (3.21) we obtain

$$m_{\lambda} = \frac{4I_{\tau}(\sqrt{2}/2) - 1}{\lambda} = \frac{2\sqrt{2}}{\tau\lambda} s_{\tau}(\sqrt{2}/2).$$
(3.22)

Then m_{λ} decreases from ∞ to m_1 as λ increases from 0 to 1. By Theorem 1.6, for given $\gamma \ge m_1$ the largest interval \triangle_{λ} on which weighted rational approximation is possible in the sense of (A2) is the interval $\triangle_{\lambda(\gamma)}$, where (see (1.14))

$$\lambda(\gamma) = \frac{2\sqrt{2}}{\tau\gamma} s_{\tau}(\sqrt{2}/2). \tag{3.23}$$

The approximation problem (A1) for Freud weights. Let $\alpha \ge 0$ and $\beta \ge 0$ with $\alpha + \beta > 0$ be given. The Freud weights satisfy the conditions of Theorem 1.5, hence by Theorem 1.5 we have

$$\lambda^*(\alpha, \beta) = \inf \{ \lambda > 0 : \exists y \in \mathbf{R} : h_{\lambda}(y) \leq \alpha \}.$$

As shown in the proof of Theorem 1.5, for every $\lambda > 0$ the equation $p_{\lambda}(y) = (\alpha/\beta) n_{\lambda}(y)$ has unique solution $\bar{y}(\alpha, \beta; \lambda) > 0$. Moreover, by the proof of Theorem 1.5 it follows that $\lambda^*(\alpha, \beta)$ is the unique solution of the equation

$$p_{\lambda}(\bar{y}(\alpha,\beta;\lambda)) = \alpha.$$

For $t \in \triangle_{\lambda}$ we have $u := \lambda^{1/\tau} t \in [-1, 1]$ and

$$s_{\lambda}(t, y) = \lambda^{1/\tau} \left(\frac{1}{\lambda} s_{\tau}(u) - \frac{y}{\pi \sqrt{1 - u^2}} \right) =: \lambda^{1/\tau - 1} \tilde{s}(u, \lambda y).$$

Then with $\tilde{p}(y) = \|\tilde{s}^+(u, y)\|$ and $\tilde{n}(y) = \|\tilde{s}^-(u, y)\|$ we have $p_{\lambda}(y) = \lambda^{-1}\tilde{p}(\lambda y)$ and $n_{\lambda}(y) = \lambda^{-1}\tilde{n}(\lambda y)$. Moreover, $\bar{y}(\alpha, \beta; \lambda) = \lambda^{-1}\tilde{y}(\alpha, \beta)$, where $\tilde{y}(\alpha, \beta)$ is the unique solution of the equation $\tilde{p}(y) = (\alpha/\beta) \tilde{n}(y)$. Hence $\lambda^*(\alpha, \beta)$ is the unique solution of the equation $p_{\lambda}(\lambda^{-1}\tilde{y}(\alpha, \beta)) = \alpha$, that is, $\tilde{p}(\tilde{y}(\alpha, \beta)) = \lambda \alpha$. Therefore

$$\lambda^*(\alpha, \beta) = \tilde{p}(\tilde{y}(\alpha, \beta))/\alpha. \tag{3.24}$$

Here $\tilde{y}(\alpha, \beta) = \tilde{y}(\tau; \alpha, \beta)$ and $\lambda^*(\alpha, \beta) = \lambda^*(\tau; \alpha, \beta)$ depend on τ as well.

Now let $\tau \in [1, 2]$. In this case by Lemma 3.3 for $y \in (0, a_{\tau})$ the equation $\tilde{s}(u, y) = 0$ has exactly two solutions $u_1(y) > 0$ and $u_2(y) = -u_1(y)$ in (-1, 1), where $a_{\tau} := \sup\{y > 0 : \tilde{p}(y) > 0\}$. Then

$$\tilde{p}(y) = 2 \int_0^{u_1(y)} s_r(t) dt - (2y/\pi) \sin^{-1}(u_1(y)).$$

From (3.21) for the last integral we obtain

$$I_{\tau}(u_1(y)) = (1/\tau) u_1(y) s_{\tau}(u_1(y)) + (1/\pi) \sin^{-1}(u_1(y)),$$

hence

$$\tilde{p}(y) = (2/\tau) u_1(y) s_{\tau}(u_1(y)) + (2/\pi)(1-y) \sin^{-1}(u_1(y)).$$
(3.25)

On the other hand using that $\tilde{p}(y) - \tilde{n}(y) = 1 - y$ we can write the equation $\tilde{p}(y) = (\alpha/\beta) \tilde{n}(y)$ in the form $(\beta - \alpha) \tilde{p}(y) = \alpha(y - 1)$. If $\alpha \neq \beta$ by (3.24) we get

$$\lambda^*(\tau; \alpha, \beta) = \frac{\tilde{y}(\tau; \alpha, \beta) - 1}{\beta - \alpha}.$$
(3.26)

If $\alpha = \beta$ then $\tilde{y}(\tau; \alpha, \alpha) = 1$ and by (3.24) and (3.25),

$$\lambda^{*}(\tau; \alpha, \alpha) = 2u_{1}(1) s_{\tau}(u_{1}(1)) / (\alpha \tau).$$
(3.27)

We now consider the special case $\tau = 2$. We have $s_2(t) = (2/\pi) \sqrt{1-t^2}$ (see (3.17)) and solving $\tilde{s}(u, y) = 0$ we get $u_{1,2}(y) = \pm \sqrt{1-y/2}$ for $y \in [0, 2)$. Hence by (3.25) we get that $\tilde{y}(2; \alpha, \beta)$ is the solution of the equation

$$(1/\pi)(\beta - \alpha)(\sqrt{y(2-y)} + 2(1-y)\sin^{-1}(\sqrt{1-y/2})) = \alpha(y-1).$$
(3.28)

Then $\lambda^*(2; \alpha, \beta) = (\tilde{y}(2; \alpha, \beta) - 1)/(\beta - \alpha)$ if $\alpha \neq \beta$, and

$$\lambda^*(2; \alpha, \alpha) = \frac{\tilde{p}(\tilde{y}(2; \alpha, \alpha))}{\alpha} = \frac{\tilde{p}(1)}{\alpha} = \frac{1}{\alpha\sqrt{2}} s_2\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\pi\alpha}.$$

Next we show that the Ullman distribution s_{τ} for $\tau \in [1, 2]$ is monotone on [0, 1].

LEMMA 3.3. For every $\tau \in [1, 2]$ the Ullman distribution s_{τ} is a monotone decreasing function on the interval [0, 1].

Proof. First let $\tau \in (1, 2]$. We will show that $s'_{\tau}(t) < 0$ on (0, 1) which in view of (3.20) is equivalent to

$$s_{\tau}(t) < \frac{\tau}{\pi(\tau-1)\sqrt{1-t^2}}, \qquad t \in (0,1),$$

or using (3.19) it is the same as

$$t^{\tau-1} \int_{t}^{1} \frac{u^{-\tau}}{\sqrt{1-u^{2}}} du < \frac{1}{(\tau-1)\sqrt{1-t^{2}}}, \qquad t \in (0,1).$$
(3.29)

For $u \in [0, 1)$ we have the power series expansion

$$(1-u)^{-1/2} = \sum_{k=0}^{\infty} (-1)^k \binom{-1/2}{k} u^k =: \sum_{k=0}^{\infty} c_k u^k,$$

where $c_0 = 1$ and

$$c_k = \frac{(2k-1)!!}{k! \, 2^k} = O(k^{-1/2})$$

for large $k \in \mathbb{N}$. Then (3.29) is equivalent to each of the following

$$t^{\tau-1} \sum_{k=0}^{\infty} c_k \int_t^1 u^{2k-\tau} du < \frac{1}{(\tau-1)} \sum_{k=0}^{\infty} c_k t^{2k},$$

$$t^{\tau-1} \sum_{k=0}^{\infty} c_k \left(\frac{1-t^{2k+1-\tau}}{2k+1-\tau} \right) < \frac{1}{(\tau-1)} \sum_{k=0}^{\infty} c_k t^{2k},$$

and

$$\frac{t^{\tau-1}}{(\tau-1)} > \sum_{k=1}^{\infty} c_k \left(\frac{t^{\tau-1}}{(2k+1-\tau)} - \frac{2kt^{2k}}{(\tau-1)(2k+1-\tau)} \right), \qquad t \in (0,1).$$

The last inequality follows from

$$\frac{1}{(\tau-1)} \ge \sum_{k=1}^{\infty} c_k \frac{1}{(2k+1-\tau)}, \qquad \tau \in (1,2].$$
(3.30)

To verify (3.30) we consider the function

$$F(\tau) = \frac{1}{(\tau - 1)} - \sum_{k=1}^{\infty} c_k \frac{1}{(2k + 1 - \tau)}, \qquad \tau \in (1, 2].$$

We have $F(\tau) \to \infty$ as $\tau \to 1^+$ and

$$F'(\tau) = -(\tau - 1)^{-2} - \sum_{k=1}^{\infty} c_k (2k + 1 - \tau)^{-2} < 0, \qquad \tau \in (1, 2].$$

So it is enough to show that $F(2) \ge 0$. Using the same expansion as before we obtain

$$\int_{t}^{1} \frac{u^{-2}}{\sqrt{1-u^{2}}} du = \sum_{k=0}^{\infty} c_{k} \left(\frac{1-t^{2k-1}}{2k-1} \right), \qquad t \in (0,1)$$

which implies

$$\sum_{k=1}^{\infty} c_k \frac{1}{(2k-1)} = 1 + \sum_{k=1}^{\infty} c_k \frac{t^{2k-1}}{(2k-1)} + \int_t^1 \frac{u^{-2}}{\sqrt{1-u^2}} du - \frac{1}{t}$$

for $t \in (0, 1)$. Next for $t \in (0, 1)$ from (3.19) we get

$$\int_{t}^{1} \frac{u^{-2}}{\sqrt{1-u^{2}}} du - \frac{1}{t} = \frac{1}{t} \left(\frac{\pi}{2} s_{2}(t) - 1 \right) = \frac{-t}{\sqrt{1-t^{2}}+1}.$$

Taking a limit as $t \rightarrow 0^+$ in the last two equations we obtain

$$F(2) = 1 - \sum_{k=1}^{\infty} c_k \frac{1}{(2k-1)} = 0.$$

For $\tau = 1$ by (3.17) we get

$$s_1(t) = (1/\pi)(\ln(1/t) + \ln(1 + \sqrt{1 - t^2})), \quad t \in (0, 1],$$

a decreasing function on (0, 1]. This completes the proof of Lemma 3.3.

SAFF AND SIMEONOV

REFERENCES

- 1. P. Borwein, E. A. Rakhmanov, and E. B. Saff, Weighted rational approximation with varying weights, *Constr. Approx.* 2 (1996), 223–240.
- S. B. Damelin and A. B. J. Kuijlaars, The support of the equilibrium measure in the presence of a monomial external field on [-1, 1], *Trans. Amer. Math. Soc.* 351 (1999), 4561–4584.
- 3. P. Deift, T. Kriecherbauer, and K. T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, *J. Approx. Theory* **95** (1998), 388–475.
- 4. A. B. J. Kuijlaars, The role of the endpoint in weighted polynomial approximation with varying weights, *Constr. Approx.* **2** (1996), 287–301.
- A. B. J. Kuijlaars, Weighted approximation with varying weights: the case of a power-type singularity, J. Math. Anal. Appl. 204 (1996), 409–418.
- H. N. Mhaskar and E. B. Saff, Weighted analogues of capacity, transfinite diameter, and Chebyshev constant, Constr. Approx. 8 (1992), 105–124.
- E. A. Rakhmanov, E. B. Saff, and P. C. Simeonov, Rational approximation with varying weights II, J. Approx. Theory 92 (1998), 331–338.
- E. B. Saff and V. Totik, "Logarithmic Potentials with External Fields," Grundlehren der mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Heidelberg, 1997.
- 9. H. Stahl and V. Totik, "General Orthogonal Polynomials," Encyclopedia of Math., Vol. 43, Cambridge University Press, New York, 1992.
- V. Totik, "Weighted Polynomial Approximation with Varying Weights," Lecture Notes in Math., Vol. 1569, Springer-Verlag, Heidelberg, 1994.