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Approximation by weighted rationals of the form wnrn , where rn= pn �qn , pn and
qn are polynomials of degree at most [:n] and [;n], respectively, and w is an
admissible weight, is investigated on compact subsets of the real line for a general
class of weights and given :�0, ;�0, with :+;>0. Conditions that characterize
the largest sets on which such approximation is possible are given. We apply the
general theorems to Laguerre and Freud weights. � 2000 Academic Press

1. MAIN RESULTS

The problem of uniform approximation on compact subsets of the real
line by weighted rational functions of the form wnrn , where w is an
admissible weight, and rn is a rational function, was investigated in [1, 7].
Here we further generalize the previous results and we consider applica-
tions to Laguerre and Freud weights.

For n # N, let Pn denote the space of algebraic polynomials of degree at
most n. For a compact set E, C(E) denotes the space of continuous real-
valued functions on E. The symbol [ } ] denotes the greatest integer function.

Let 7 be a closed regular subset of the real line R and w: 7 � [0, �) be
a strongly admissible weight, that is, w is continuous on 7, it is positive on
a set of positive capacity, and if 7 contains a neighborhood of the point �,
then |x|w(x) � 0 as |x| � �, x # 7. Let :�0, ;�0 with :+;>0 be given
numbers.

We shall first consider the problem of characterizing the compact sets
E�7 having the approximation property that every function f # C(E) is
the uniform limit on E of a sequence [wnrn]�

n=1 , with rn= pn�qn , pn # P[:n]

and qn # P[;n] .
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From previous results from [10, 8] regarding weighted polynomial
approximation (the case :=1, ;=0) it is known that E�Sw , where Sw is
the support of an extremal measure +w , the unique probability measure
that minimizes the weighted energy

Iw(+) :=|| log
1

|z&t|w(z) w(t)
d+(z) d+(t)

over the set M(7) of all probability Borel measures + supported on 7. It
is also known [6, 8], that Sw is a compact set, and the following represen-
tation for w(x) holds on Sw :

w(x)=exp(U +w (x)&Fw), x # Sw , (1.1)

where Fw is a constant, and for a compactly supported Borel measure + the
logarithmic potential U+ is defined by

U+(z) :=| log
1

|z&t|
d+(t), z # C.

In [7, Theorem 1.5], it was shown that representation like (1.1) on an interval
I with +w replaced by a signed measure +=++&+& with absolutely
continuous +\ having densities that behave like |t&c|&1�2 at the endpoints
c of I allows approximation on I. Thus the largest set E having the approx-
imation property is essentially the largest set E on which w can be written
as the exponential of the logarithmic potential of an absolutely continuous
signed measure.

Before stating the main results of the paper we introduce some notation.
Let K/R be a compact set of positive logarithmic capacity and |K be

its equilibrium measure, that is, the measure which minimizes the unweighted
logarithmic energy I1(+) over all measures + # M(K). If |K is absolutely
continuous with respect to Lebesgue measure, then by fK we shall denote
its density.

Let & be a positive measure supported on K. For y # R we define the
signed measure

_( y) :=&& y|K .

Let _( y)=_+( y)&_&( y) be the Jordan decomposition of _( y) and set

p( y) :=&_+( y)& and n( y) :=&_&( y)&.

Our first theorem combines and extends Theorem 1 of [1] and Theorem
1.5 of [7].

342 SAFF AND SIMEONOV



Theorem 1.1. Let w be a strongly admissible weight defined on a set E
which is the union of finitely many closed intervals. Let :�0, ;�0 with
:+;>0 be given numbers. Assume that

w(u)=exp(U &(u)+F), u # E, (1.2)

where F is a constant, d&(t)=v(t) dt on E, and the density v is continuous
and nonnegative on Int(E), and at each endpoint c of E,

v(t) |t&c|1�2 � lc<�, t � c, t # E. (1.3)

Let _( y)=&& y|E .
First assume that there is a sequence of weighted rationals of the form

wnpn �qn with pn # P[:n] and qn # P[;n] such that wnpn �qn � 1 as n � �
uniformly on E. Then there exists y # R with p( y)�: and n( y)�;.

Next assume that there exists y # R such that p( y)<: and n( y)<;. Then
every function f # C(E) is the uniform limit on E of a sequence of weighted
rationals [wnpn �qn]�

n=1 with pn # P[:n] and qn # P[;n] .

Remark 1.2. If E is a compact set with p(x)=: and n(x)=; for some
x, then weighted rational approximation on E of functions not vanishing
on E is not always possible. This is the case for the exponential weight
w(u)=eu on the interval [0, 2?]. In this case, for :=;=1, A. B. J.
Kuijlaars has proved that every function f # C([0, 2?]) that has at least
one zero on [?, 2?] is approximable. Hence neither of the conditions of
Theorem 1.1 is both necessary and sufficient.

It turns out that for certain classes of admissible weights w the condi-
tions of Theorem 1.1 are satisfied on each set Sw * , *>0.

Corollary 1.3. Let w(u)=exp(&Q(u)) be a positive continuous weight
defined on a set 7/R that is the union of finitely many closed intervals
[Ij]m

j=1 . Assume that on each interval I j , the external field Q(u) is convex or
|u| Q$(u) is increasing, and for some p # (1, �), w$ # L p(7). Then w satisfies
the conditions of Theorem 1.1. Furthermore, Theorem 1.1 holds on each set
E=Sw* , *>0.

Conversely, if w is a weight satisfying the conditions of Theorem 1.1 on a
set E that is the union of finitely many intervals, then E=Sw * for some *>0.

Corollary 1.4. Let w(u)=exp(&Q(u)) be an admissible weight defined
on a set 7/R that is the union of finitely many intervals, and assume that Q
is a real-analytic function on 7. Then w satisfies the conditions of Theorem 1.1.
Furthermore, Theorem 1.1 holds on each set E=Sw * , *>0.
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The above results and the representation

w(x)=exp(U (1�*) +w * (x)&(1�*) Fw *), x # Sw * (1.4)

which follows from (1.1) suggest that it is important to study weighted
rational approximation on the sets Sw * . Before we state the corresponding
approximation problem we mention that by [8, Theorem IV.4.1], ([10,
Lemma 5.4])

Sw *1 �Sw * 2 , for *1>*2>0. (1.5)

Now we state the first approximation problem:

(A1) For given :�0 and ;�0 with :+;>0 find the largest set Sw* (or,
equivalently, the smallest *>0) with the property that on every compact set
E/Int(Sw *) every function f # C(E) is the uniform limit on E of a sequence
[wnpn �qn]�

n=1 with pn # P[:n] and qn # P[;n] .

Before stating the next theorem we introduce some notation. For *>0
and y # R we define the signed measure

_*( y) :=
1
*

+w *& y|* , (1.6)

where |* :=|Sw * , and we set

p*( y) :=&_+
* ( y)&, n*( y) :=&_&

* ( y)&. (1.7)

Theorem 1.5. Let w be a strongly admissible weight defined on a closed
and regular set 7�R. Assume that for every *>0, Sw* is the union of
finitely many closed intervals, the extremal measure +w * is absolutely
continuous on Sw * , its density v* is continuous and nonnegative on Int(Sw *),
and at each endpoint c of Sw * ,

v*(t) |t&c| 1�2 � l*(c)<�, t � c, t # Sw* . (1.8)

Assume further that Sw*1 /Sw * 2 for all *1>*2>0. In particular this is true
if Q=log(1�w) is real-analytic on 7, and v*(c)=0 at each endpoint c of Sw *

for all *>0.
Then the infimum of all numbers *>0 such that on every compact set

E/Sw* every function f # C(E) is the uniform limit on E of a sequence
[wnpn �qn]�

n=1 with pn # P[:n] and qn # P[;n] is the number **=**(:, ;)
defined by

**(:, ;)=inf [*>0 : _ y # R : p*( y)<:, n*( y)<;], (1.9)
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if :>0 and ;>0, and

**(:, 0)=inf [*>0 : _ y # R : p*( y)<:, n*( y)=0], (1.10)

**(0, ;)=inf [*>0 : _ y # R : p*( y)=0, n*( y)<;]. (1.11)

Finally we consider approximation by weighted rationals wnpn �qn with
pn # P[:n] , qn # P[;n] for :�0 and ;�0 with a positive sum :+; that does
not exceed a given number #>0.

Let w be a strongly admissible weight defined on a closed and regular set
7/R� and assume that w satisfies the conditions of Theorem 1.5. The
second approximation problem is stated below:

(A2) For given #>0 find the largest set Sw * (equivalently find the
smallest *>0) such that there exist :�0 and ;�0 with :+; # (0, #] having
the property that on every compact set E/Int(Sw *) every function f # C(E)
is the uniform limit of a sequence of weighted rationals [wnpn �qn]�

n=1 with
pn # P[:n] , qn # P[;n] .

For *>0 and y # R we set m*( y) :=p*( y)+n*( y), where p*( y) and n*( y)
are defined in (1.7) and (1.6). Then m*( y)�1�*+| y| and

m*( y)=| |d_*( y)|=| |(1�*) d+w*& y d|Sw * |

� }| |(1�*) d+w * |&| | y d|Sw* | }=|1�*&| y| |. (1.12)

From these inequalities we get

m* :=inf [m*( y): y # R]=min[m*( y): y # [0, 2�*]]. (1.13)

Let f* be the equilibrium density for the set Sw * , and

s*(t, y) :=
1
*

v*(t)& yf*(t)

be the density of the signed measure _*( y).

Theorem 1.6. Let #>0 be given and w satisfy the conditions of Theorem
1.5. Assume that for every *>0 and y # R, s*(t, y) has at most countably
many zeros in Sw* . Then the largest set Sw * having the property that for
every compact E/Int(Sw *) every function f # C(E) is the uniform limit on E
of a sequence of weighted rationals [wnpn �qn]�

n=1 with pn # P[:n] and
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qn # P[;n] for some :�0 and ;�0 with :+; # (0, #], is the set Sw *(#) , where
*(#) # (0, 1] is the solution of the equation

m*=#. (1.14)

2. PROOFS

Proof of Theorem 1.1. The proof of the necessity part of the theorem is
the same as the proof of Lemma 5 of [1].

The sufficiency part follows from Theorem 1.5 in [7] and Lemma 4.4 in
[9]. It is known that for a set E=�m

j=1 [aj , bj] with a1<b1<a2< } } } <
am<bm the equilibrium distribution |E has the form

d|E (t)= fE (t) dt=
|S(t)|

? - |R(t)|
dt, t # E, (2.1)

where

R(t)= `
m

j=1

((t&aj)(t&b j)) and S(t)= `
m&1

j=1

(t& yj)

for some yj # (bj , aj+1), j=1, ..., m&1 (see, for example, [9, Lemma 4.4]).
From (2.1) we see that at the endpoints of E, the density fE(t) has the
same behavior as the density v(t) and the result follows from Theorem 1.5
of [7]. K

Proof of Corollary 1.3. Since w*=exp(&*Q), for *>0 the external
field for w* has the same properties as Q. Hence it is enough to consider
w only. By [8, Theorem IV.1.10(d)], the support Sw is the union of inter-
vals [Jk] at most one lying in any of the intervals Ij (the components of
7). Furthermore, if J is one of the intervals Jk , by Theorem IV.1.6(e) of
[8] we have

+w |J
=+w |J++w | (R"J) ,

where the bar denotes taking balayage onto J out of C"J. This implies
that Sw |J

=J. Then by [8, Theorem IV.2.4] applied to w |J , and by [8,
Corollary II.4.12] according to which the measure +w | (R"J) has continuous
density it follows that (1.3) holds for the density of +w |J

. The representation
(1.2) for w on Sw follows from (1.1).

Now suppose that E is the union of finitely many intervals, and w satisfies
the conditions of Theorem 1.1 on E. In particular w(u)=exp(U v(u)+F ),
u # E, with density v=v+&v& satisfying (1.3). From (2.1) and (1.3) we
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get that for #>0 large enough (#>sup[v&(t)�fE (t), t # E]), v1 :=v+#fE>0
on E. Setting * :=(&v+&+#&&v&&)&1>0 and F1 :=*(F&# log(1�cap(E)))
we obtain

w*(u)=exp(U *v1 (u)+F1), u # E,

and then by [8, Theorem I.3.3] we get Sw *=E and +w*=*v1dt. K

Proof of Corollary 1.4. For a real-analytic external field Q it was shown
in [3, Theorem 38] that Sw is the union of finitely many closed intervals,
the measure +w is absolutely continuous on Sw , and its density satisfies the
conditions of Theorem 1.1. The same is true for w* for any *>0. Thus the
corollary follows from Theorem 1.1. K

For the proof of Theorem 1.5 we need a lemma.

Lemma 2.1. Let E1 /E2 be compact sets on the real line. Assume that
each Ej , j=1, 2 is the union of finitely many intervals. Let |j=|Ej and f j

denote the equilibrium measure and density for Ej , respectively. Then f1� f2

on E1 and for every interval I�E1 ,

|1(I)>|2(I ).

Proof. By Lemma 5.5 of [10] (or [8, Theorem IV.1.6(e)]) we have

|1=|2 =|2 | E1
+|2 |E2"E1

�|2 |E1
,

where the bar denotes taking balayage onto E1 out of C"E1 . Thus f1� f2

on E1 . We set & :=|2 |E2"E1
.

Now assume that there is an interval I/E1 such that |1(I )=|2(I ).
Then &� (I )=0. Let h be a continuous function on E1 that vanishes on E1 "I
and is positive on Int(I ), and let H denote the solution of the Dirichlet
problem on the domain D=C� "E1 with boundary function h (see [8,
Section I.2]). This function H is harmonic on D and continuous on C� , and
by the minimum principle, [8, Theorem I.2.4], it is also positive on D. By
a property of balayage measures, [8, Theorem II.4.1(c)], we have

| H d&� =| H d&

which is a contradiction. Indeed the left integral is �E1
h d&� =0 by the choice

of h, and the right integral is positive since it is over E2 "E1 /D where
H>0 and by (2.1) &$= f2>0. K

Proof of Theorem 1.5. We assume that :>0 and ;>0, the proof in the
other two cases is similar.
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First let *>** and E/Sw* be a compact set. Let f # C(E) and f1 #
C(Sw *) be an extension of f to Sw * . Then there is y # R such that p*( y)<:
and n*( y)<;, and by (1.4) and Theorem 1.1, f1 is uniformly approximable
on Sw* by weighted rationals wnpn�qn with pn # P[:n] , qn # P[;n] and so is
f on E.

When *=** we can verify the approximation property only on compact
sets E/Int(Sw **). Indeed let E be such set. By Lemma 5.8 of [10] for every
x # Int(Sw **) there is a *(x)>** such that x # Int(Sw *(x)). Then

E/ .
x # E

Int(Sw *(x))

and since E is compact there is a finite subcover of E, [Int(Sw *(x i ))]k(E)
i=1 . Let

* :=min[*(xi): 1�i�k(E)]. Then *>**, E/Sw * , and as we have already
shown every f # C(E) is uniformly approximable on E by weighted
rationals wnpn �qn with pn # P[:n] and qn # P[;n] .

In verifying the converse it is enough to assume that Sw *1 /Sw * 2 for all
*1>*2>0. Indeed in the case when w is real-analytic on 7 we have by
Lemma 2.3 of [2] for every *0>0,

.
*>*0

Sw *=[t # Sw * 0 : v*0
(t)>0],

and since for every *>0, v* vanishes at the endpoints of Sw * we get
Sw * 1 /Sw * 2 for *1>*2>0. By Theorem IV.4.9 of [8] (or Lemma 5.7 of
[10]) with w :=w*2, * :=*1 �*2>1, and d+w *=v* dt we have

*2

*1

v*1
�v*2

|Sw *1
&\1&

*2

*1+ fSw * 2
| Sw * 1

. (2.2)

If **=0 there is nothing to prove. So assume that **>0 and let
* # (0, **). In view of Theorem 1.1 it is enough to show that for all y # R

h*( y) :=max[ p*( y), (:�;) n*( y)]>:.

Indeed assume that there is y0 with h*( y0)=:. By definition p*( y)�0 is a
decreasing function of y and p*(0)=1�*>0. Similarly n*( y)�0 is an
increasing function of y and n*(0)=0. Hence h* :=inf [h*( y): y # R] is
attained at unique y*>0 and

h*= p*( y*)=(:�;) n*( y*). (2.3)
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Since *<** from the definition of ** we get

:=h*( y0)�h*=min[h*( y): y # R]�:,

that is, h*( y0)=h*( y*)=:. Then y0= y*>0 and p*( y0)=(:�;) n*( y0)=:.
Let *1 # (*, **). By (2.2) with *2=* and Lemma 2.1, for y>0 such that

p*1( y)>0 we have

1
*1

v*1
& yfSw*1

�
1
*

v* |Sw *1
&\1

*
&

1
*1+ fSw * |Sw *1

& yfSw *1

�
1
*

v* | Sw *1
&\1

*
&

1
*1

+ y+ fSw * |Sw *1
. (2.4)

We integrate (2.4) over supp(_+
*1

( y)). Since Sw *1 /Sw * , applying Lemma
2.1 we obtain

p*1
( y)<p*( y+1�*&1�*1). (2.5)

We set y= y0&1�*+1�*1>0 for *1 # (*, **) close enough to * (so that
1�*&1�*1< y0 �2), and we obtain

p*1
( y0&1�*+1�*1)<p*( y0)=:.

Then using the identity p*( y)&n*( y)=1�*& y we obtain

n*1
( y0&1�*+1�*1)= p*1

( y0&1�*+1�*1)+ y0&1�*

<p*( y0)+ y0&1�*=n*( y0)=;.

We get h*1
( y0&1�*+1�*1)<: which contradicts the choice of *1<**.

Moreover, we have shown that h* is a decreasing function of *>0.
We proved that if * # (0, **) then h*( y)>: for all y # R.
Let * # (0, **) and let E=Sw * 1 for some *1 # (*, **). Then the function

1E (the characteristic function of the set E) is not uniformly approximable
on E by weighted rationals wnpn �qn with pn # P[:n] and qn # P[;n] , because,
otherwise we would have by Theorem 1.1 an y # R with h*( y)�: and as
we have shown this is impossible.

Theorem 1.5 is proved. K

For the proof of Theorem 1.6 we will need the following lemma.

Lemma 2.2. Assume that for every *>0 and y # R the density s*(t, y) of
the signed measure _*( y) has at most countably many zeros in Sw* . Then the
function m*( y) # C1(R) and there is a unique y*= y*(*) such that m*=m*( y*).
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Proof. Let s\
* (t, y) be the densities of _\

* ( y) respectively. It follows
from the representation

m*( y)=|
Sw *

|(1�*) d+w* (t)& y d|*(t)|

that m*( y) # C(R). Let y0 # R be fixed. By the definition of m*( y),

m*( y)&m*( y0)

=|
Sw *

(s+
* (t, y)&s+

* (t, y0)) dt+|
Sw *

(s&
* (t, y)&s&

* (t, y0)) dt

=2 |
Sw *

(s+
* (t, y)&s+

* (t, y0)) dt&|
Sw *

(s*(t, y)&s*(t, y0)) dt

=( y& y0)&2 |
q*

+ ( y) & q*
+ ( y0 )

( y& y0) f*(t) dt

+2 |
((q*

+ ( y) _ q*
+ ( y0))"(q*

+ ( y) & q*
+ ( y0)))

(s+
* (t, y)&s+

* (t, y0)) dt, (2.6)

where q\
* ( y) is the support of s\

* (t, y), respectively. Let y~ be the infimum
of all y�0 such that s*(t, y) has at least one zero in Int(Sw *). Since yf*(t)
increases with y, then q+

* ( y1)�q+
* ( y2) for y1> y2�0 and if we assume

that for some y1> y2� y~ , q+
* ( y1)#q+

* ( y2), then at t # q+
* ( y1) &

q&
* ( y1) we would have

v*(t)=*y1 f*(t)>*y2 f*(t)=v*(t)

which is impossible. Furthermore, q+
* ( y) � q+

* ( y0) in the sense that the
Lebesgue measure of the set (q+

* ( y) _ q+
* ( y0))"(q+

* ( y) & q+
* ( y0)) tends

to zero as y � y0 . Otherwise there will be a set E with positive Lebesgue
measure and a number y0>0 such that E�q+

* ( y) for all y # [0, y0), but
E & q+

* ( y0)=<. Then for t # E we will have 0�s*(t, y0)=limy � y0
s*(t, y)

�0 hence s*(t, y0)=0 which contradicts the assumption that s*(t, y0) has
countably many zeros in Sw* .

For t � q+
* ( y) & q+

* ( y0) we have

|s+
* (t, y)&s+

* (t, y0)|�|s*(t, y)&s*(t, y0)|=| y& y0 | f*(t),

and therefore the absolute value of the last integral in (2.6) is at most

| y& y0 | |
((q*

+ ( y) _ q*
+ ( y0))"(q*

+ ( y) & q*
+ ( y0 )))

f*(t) dt=o( | y& y0 | ).
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Hence from (2.6) we obtain

m$*( y0)=1&2 |
q*

+ ( y0)
f*(t) dt. (2.7)

Then m$*( y) # C(R) follows from (2.7) and the fact that q+
* ( y) con-

tinuously changes with y.
For y� y~ , q&

* ( y)#< and by (2.7), m$*( y)=&1, and m*( y)= p*( y)=
1�*& y. For y> y~ , q+

* ( y) decreases with y and by (2.7) we get that m$*( y)
increases on ( y~ , �), and m$*( y) � 1 as y � �. Then there is a unique y*=
y*(*)> y~ such that m$*( y*)=0 and by (1.13), m*=m*( y*). Lemma 2.2 is
proved. K

Proof of Theorem 1.6. We first show that m* is a decreasing function of
*>0. Let *1>*>0. By (2.5) we have

p*1
( y)<p*( y+1�*&1�*1), y�0.

Since m*( y)=2p*( y)+ y&1�*, for y�0 we have

m*1
( y)<2p*( y+1�*&1�*1)+ y&1�*1=m*( y+1�*&1�*1). (2.8)

Then from (1.13) and (2.8) and Lemma 2.2 (m*( y) # C(R)) we get

m*1
=min[m*1

( y): y # [0, 2�*1]]

<min[m*( y+1�*&1�*1): y # [0, 2�*1]]

=min[m*( y): y # [1�*&1�*1 , 1�*+1�*1]]. (2.9)

By the continuity of m*( y) (Lemma 2.2) the right-hand side of (2.9) tends
to min[m*( y): y # [0, 2�*]]=m* as *1 � *, *1>*. Hence m* is right-
continuous and nondecreasing function of *>0. Now assume that for some
*2>*>0, m*2

=m* . Then for every *1 # (*, *2], m*1
=m* . Then (2.9)

implies that for every *1 # (*, *2], m*1
=m*=m*( y*) for some y* #

[0, 1�*&1�*1) _ (1�*+1�*1 , 2�*]. By Lemma 2.2 this y*= y*(*) is unique,
hence y*=0 or y*=2�*, that is m$*(0)=0 or m$*(2�*)=0. But this is
impossible since by (2.7) of Lemma 2.2 and q+

* (0)=supp(_+
* (0))=Sw * we

have m$*(0)=&1, and by (1.12) and m*(0)=1�*, y*(*)=2�* implies
m*=1�* and s*(t, 2�*)�0 on Sw * , which in view of (2.7) gives m$*(2�*)=1.
Hence m* is a decreasing function of *>0.

Now let #>0 be given. First let E/Int(Sw*(#)) be a compact set. As in
the proof of Theorem 1.5 it follows that there is a *>*(#) such that
E�Sw* . Moreover,

$ :=#&m*=m*(#)&m*>0,
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and m*>0 for otherwise s*(t, y*(*))=0 on Sw * which contradicts the
assumption concerning the zeros of the functions s*(t, y).

Let a* :=inf [ y>0 : n*( y)>0], and b* :=sup[ y>0 : p*( y)>0]. Then
0�a*<b*��, because p*( y) and &n*( y) are nonincreasing functions of
y # R, and m*>0. Moreover, y*(*) # [a* , b*]. Indeed if say y*(*)<a* ,
then for every y # ( y*(*), a*) we would have m*=m*( y*(*))= p*( y*(*))>
p*( y)=m*( y) which contradicts the definition of m* . By the continuity of
m*( y) and hence that of p*( y)=(m*( y)& y+1�*)�2 and n*( y)=m*( y)&
p*( y), we can select y0 # (a* , b*) with | p*( y0)& p*( y*(*))|�$�4, and
|n*( y0)&n*( y*(*))|�$�4. Then we set : :=p*( y0)+$�8 and ; :=n*( y0)
+$�8. We have :+;�m*+3$�4<#, p*( y0)<:, and n*( y0)<;. Hence by
Theorem 1.1, every function f # C(E) is uniformly approximable on E by a
sequence of weighted rationals [wnpn �qn] with pn # P[:n] and qn # P[;n] .

Conversely, let * # (0, *(#)). Then Sw *(#) /Sw * , and m*>m*(#)=#.
Consider the compact set E :=Sw*(#) . We recall that under the conditions of
the theorem E is the union of finitely many closed intervals. Then the con-
stant function 1 on E is not w-approximable in the sense of (A2). Indeed,
assume that there are :�0 and ;�0 with :+; # (0, #], and a sequence
[wnpn �qn] with pn # P[:n] and qn # P[;n] that tends to 1 uniformly on E as
n � �. By Theorem 1.1 there exists y # R with p*( y)�: and n*( y)�;.
Then m*�m*( y)�:+;�# gives a contradiction. Theorem 1.6 is proved.

K

3. WEIGHTED RATIONAL APPROXIMATION WITH LAGUERRE
AND FREUD WEIGHTS

Laguerre weights. The function w(u)=u%e&cu with %�0 and c>0
defined on 7=[0, �) is called Laguerre weight. It is known that ([8],
Examples IV.1.18 and IV.5.4)

Sw=[a(%, c), b(%, c)]=: q%, c (3.1)

is an interval with endpoints a(%, c)=1�c(%+1&- 2%+1) and b(%, c)=
1�c(%+1+- 2%+1), and the extremal measure +w has density

vw(t)=
c
?t

- (t&a(%, c))(b(%, c)&t), t # q%, c . (3.2)

For *>0 we have w(u)*=u*%e&*cu, the support Sw *=q*%, *c ,

v*(t)=vw *(t)=
*c
?t

- (t&a)(b&t), t # q* :=q*%, *c ,
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where a=a(*%, *c) and b=b(*%, *c), and

f*(t)=
1

? - (t&a)(b&t)
, t # q*

is the equilibrium density for the interval q* .

The approximation problem (A2) for Laguerre weights. Let #>0 be
given. To determine m* for *>0 we consider the equation

v*(t)=*yf*(t),

which is equivalent to

c(t&a)(b&t)= yt or ct2+t( y&c(a+b))+cab=0. (3.3)

The formulas for v* and f* show that (3.3) has two real solutions
t1, 2( y) # [a, b],

t1, 2( y)=
c(a+b)& y\- (c(a+b)& y)2&4c2ab

2c
(3.4)

if and only if y # [0, c(- b&- a)2]=[0, 2�*]. For other y we have m*( y)
>m* . By Lemma 2.2 m*=m*( y*), where y* is the unique solution of the
equation

|
t1 ( y*)

t2( y*)
f*(t) dt= 1

2 . (3.5)

Changing variables t=(a+b)�2+s(b&a)�2 in (3.5) we obtain

sin&1(a1+a2)&sin&1(a1&a2)=?�2, (3.6)

where

a1=
&y*

c(b&a)
and a2=

- (c(a+b)& y*)2&4c2ab
c(b&a)

.

We apply the cosine function to both sides of the last equation and simplify
to obtain

|- (1&(a1+a2)2)(1&(a1&a2)2)|=|a2
1&a2

2 |.

Simplifying further we obtain 2(a2
1+a2

2)=1, or equivalently

y*2+((c(a+b)& y*)2&4c2ab)
c2(b&a)2 =

1
2

,
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which reduces to

4y*2&4c(a+b) y*+c2(b&a)2=0.

The solutions of the last equation are y*1, 2=c(a+b\2 - ab)�2, and since
a+b=2(*%+1)�(*c) and - ab=%�c (see (3.1)), we have

y2*=1�* and y1*=(2*%+1)�*.

Since the range of sin&1 is [&?�2, ?�2], Eq. (3.6) implies that a1+a2�0
which is equivalent to y*�(2*%+1)�(*(*%+1)) and y2* only satisfies this
condition, unless %=0 in which case y1*= y2*. Hence,

y*= y2*=c(a+b&2 - ab)�2=1�*. (3.7)

Next we derive a formula for m*( y) for y # [0, 2�*]. We have p*(0)=1�*
and since m*( y)=2p*( y)+ y&1�*,

p$*( y)=(m$*( y)&1)�2=&|
t1( y)

t2( y)
f*(t) dt, (3.8)

where we used (2.7). Then with

s1, 2( y) :=(2t1, 2( y)&a&b)�(b&a)

we obtain

p$*( y)=(sin&1(s2( y))&sin&1(s1( y)))�?. (3,9)

Then

p*( y)=1�*+|
y

0
p$*(u) du=1�*+(J2( y)&J1( y))�?

and

m*( y)=1�*+ y+2(J2( y)&J1( y))�?, (3.10)

where

J1, 2( y) :=|
y

0
sin&1(s1, 2(u)) du

= y sin&1(s1, 2( y))&|
y

0

us$1, 2(u)

- 1&s1, 2(u)2
du

= y sin&1(s1, 2( y))&|
y

0

ut$1, 2(u)

- (t1, 2(u)&a)(b&t1, 2(u))
du. (3.11)
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For t1, 2(u) from (3.4) we get

t$1, 2(u)=
�t1, 2(u)

c(t1(u)&t2(u))
(3.12)

and by (3.3)

- (t1, 2(u)&a)(b&t1, 2(u))=- ut1, 2(u)�c. (3.13)

Then by (3.11), (3.12) and (3.13) we obtain

J2( y)&J1( y)= y(sin&1(s2( y))&sin&1(s1( y)))

&
1

- c |
y

0

- u(- t1(u)+- t2(u))
t1(u)&t2(u)

du.

For the last integral we have by (3.3)

|
y

0

- u

- t1(u)&- t2(u)
du=|

y

0

- u

- t1(u)+t2(u)&2 - t1(u) t2(u)
du

=|
y

0

- u

- (a+b)&u�c&2 - ab
du

=- c |
y

0

- u

- 2�*&u
du=:

- c
*

A(*y).

To compute A( y) we use change of variables u � 2v2 and integration by
parts

A( y)=4 |
- y�2

0

v2

- 1&v2
dv=&4 |

- y�2

0
- 1&v2 dv

+4 |
- y�2

0

1

- 1&v2
dv=&4 �y

2 \1&
y
2+&A( y)+4 sin&1(- y�2),

and so we obtain

A( y)=2 sin&1(- y�2)&- y(2& y). (3.14)

Then

J2( y)&J1( y)= y(sin&1(s2( y))&sin&1(s1( y)))&A(*y)�*
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and for m*( y) from (3.8), (3.9), and (3.10) we obtain

m*( y)=1�*+ y&2y |
t1( y)

t2 ( y)
f*(t) dt&2A(*y)�(*?). (3.15)

For the minimal mass m* we get (using (3.5) and (3.14))

m*=m*( y*)=m*(1�*)=2�*&(2�*) |
t1 (1�*)

t2 (1�*)
f*(t) dt

&2A(1)�(*?)=1�*&2(?�2&1)�(*?)=2�(*?). (3.16)

The quantity m* decreases from � to m1 as * increases from 0 to 1. Then
by Theorem 1.6 for a given #�m1 the largest interval q* :=q*%, *c on
which approximation by weighted rationals is possible in the sense of (A2)
is the interval q*(#) , where *(#)=2�(?#).

Freud weights. The function w(u)=exp(&#{ |u| {), with {>0 and

#{=
1({�2) 1(1�2)
21(({+1)�2)

,

defined on 7=R is called Freud weight. By [8, Theorem IV.5.1], Sw=
[&1, 1] and +w{

(t)=s{(t) dt, where

s{(t)=
{
? |

1

|t|

u{&1

- u2&t2
du, t # [&1, 1] (3.17)

is the so called Ullman distribution.

The approximation problem (A2) for Freud weights. Let *>0. For w(u)*

=exp(&*#{ |u| {) it follows from the definition of the extremal measure
that Sw *=[&*&1�{, *&1�{]=: q* , and

v*(t)=vw *(t)=s{(*1�{t) *1�{, t # q* .

The function s{ is even and as we are going to show later with Lemma 3.3,
for { # [1, 2], s{(t) is monotone decreasing on [0, 1] and so is v*(t) on
[0, *&1�{].

We shall restrict ourselves to Freud weights with { # [1, 2] since in this
case the monotonicity of s{ allows us to solve the problem completely. For
y�0 we consider the function

s*(t, y)=(1�*) v*(t)& yf*(t), t # q* ,
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where

f*(t)=
1

? - *&2�{&t2
, t # q*

is the equilibrium density for q* . The equation s*(t, y)=0 has exactly two
solutions t1( y)>0 and t2( y)=&t1( y) in q* for y # [0, a{, *), where

a{, * :=
v*(0)
*f*(0)

=
{

*({&1)
.

By the proof of Theorem 1.6 and Lemma 2.2 we have

m*=min[m*( y): y # [0, a{, *]]=m*( y*),

where y* # [0, a{, *) is the unique solution of the equation

1
2

=|
t1 ( y)

&t1 ( y)
f*(t) dt=

2
?

sin&1(*1�{t1( y)).

Then *1�{t1( y*)=- 2�2, and for m* we obtain

m*=m*( y*)=2p*( y*)+ y*&
1
*

=
2
* |

t1 ( y*)

&t1 ( y*)
v*(t) dt&2y* |

t1 ( y*)

&t1 ( y*)
f*(t) dt+ y*&

1
*

=
2
* |

t1 ( y*)

&t1 ( y*)
v*(t) dt&

1
*

=
4
* |

- 2�2

0
s{(u) du&

1
*

. (3.18)

To compute the last integral we need a differential equation for s{(t). Let
t # (0, 1). With the change of variables u � tu1 and u1 � 1�u we obtain

s{(t)=
{
? |

1

t

u{&1

- u2&t2
du

=
{
?

t{&1 |
1�t

1

u{&1
1

- u2
1&1

du1=
{
?

t{&1 |
1

t

u&{

- 1&u2
du. (3.19)

Then

s${(t)=
{
? \({&1) t{&2 |

1

t

u&{

- 1&u2
du&t{&1 t&{

- 1&t2+
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or equivalently

ts${(t)=({&1) s{(t)&
{

? - 1&t2
. (3.20)

For a # [0, 1] using integration by parts and (3.20) we obtain

I{(a) :=|
a

0
s{(t) dt=as{(a)&|

a

0
ts${(t) dt

=as{(a)+
{
?

sin&1(a)&({&1) I{(a),

hence

I{(a)=
a
{

s{(a)+
1
?

sin&1(a). (3.21)

From (3.18) and (3.21) we obtain

m*=
4I{(- 2�2)&1

*
=

2 - 2
{*

s{(- 2�2). (3.22)

Then m* decreases from � to m1 as * increases from 0 to 1. By Theorem
1.6, for given #�m1 the largest interval q* on which weighted rational
approximation is possible in the sense of (A2) is the interval q*(#) , where
(see (1.14))

*(#)=
2 - 2

{#
s{(- 2�2). (3.23)

The approximation problem (A1) for Freud weights. Let :�0 and ;�0
with :+;>0 be given. The Freud weights satisfy the conditions of
Theorem 1.5, hence by Theorem 1.5 we have

**(:, ;)=inf [*>0 : _y # R : h*( y)�:].

As shown in the proof of Theorem 1.5, for every *>0 the equation p*( y)=
(:�;) n*( y) has unique solution y� (:, ;; *)>0. Moreover, by the proof of
Theorem 1.5 it follows that **(:, ;) is the unique solution of the equation

p*( y� (:, ;; *))=:.
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For t # q* we have u :=*1�{t # [&1, 1] and

s*(t, y)=*1�{ \1
*

s{(u)&
y

? - 1&u2+=: *1�{&1s~ (u, *y).

Then with p~ ( y)=&s~ +(u, y)& and n~ ( y)=&s~ &(u, y)& we have p*( y)=
*&1p~ (*y) and n*( y)=*&1n~ (*y). Moreover, y� (:, ;; *)=*&1y~ (:, ;), where
y~ (:, ;) is the unique solution of the equation p~ ( y)=(:�;) n~ ( y). Hence
**(:, ;) is the unique solution of the equation p*(*&1y~ (:, ;))=:, that is,
p~ ( y~ (:, ;))=*:. Therefore

**(:, ;)= p~ ( y~ (:, ;))�:. (3.24)

Here y~ (:, ;)= y~ ({; :, ;) and **(:, ;)=**({; :, ;) depend on { as well.

Now let { # [1, 2]. In this case by Lemma 3.3 for y # (0, a{) the equation
s~ (u, y)=0 has exactly two solutions u1( y)>0 and u2( y)=&u1( y) in
(&1, 1), where a{ :=sup[ y>0 : p~ ( y)>0]. Then

p~ ( y)=2 |
u1 ( y)

0
s{(t) dt&(2y�?) sin&1(u1( y)).

From (3.21) for the last integral we obtain

I{(u1( y))=(1�{) u1( y) s{(u1( y))+(1�?) sin&1(u1( y)),

hence

p~ ( y)=(2�{) u1( y) s{(u1( y))+(2�?)(1& y) sin&1(u1( y)). (3.25)

On the other hand using that p~ ( y)&n~ ( y)=1& y we can write the equation
p~ ( y)=(:�;) n~ ( y) in the form (;&:) p~ ( y)=:( y&1). If :{; by (3.24) we
get

**({; :, ;)=
y~ ({; :, ;)&1

;&:
. (3.26)

If :=; then y~ ({; :, :)=1 and by (3.24) and (3.25),

**({; :, :)=2u1(1) s{(u1(1))�(:{). (3.27)

We now consider the special case {=2. We have s2(t)=(2�?) - 1&t2

(see (3.17)) and solving s~ (u, y)=0 we get u1, 2( y)=\- 1& y�2 for y # [0, 2).
Hence by (3.25) we get that y~ (2; :, ;) is the solution of the equation

(1�?)(;&:)(- y(2& y)+2(1& y) sin&1(- 1& y�2))=:( y&1). (3.28)
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Then **(2; :, ;)=( y~ (2; :, ;)&1)�(;&:) if :{;, and

**(2; :, :)=
p~ ( y~ (2; :, :))

:
=

p~ (1)
:

=
1

: - 2
s2 \ 1

- 2+=
1

?:
.

Next we show that the Ullman distribution s{ for { # [1, 2] is monotone
on [0, 1].

Lemma 3.3. For every { # [1, 2] the Ullman distribution s{ is a monotone
decreasing function on the interval [0, 1].

Proof. First let { # (1, 2]. We will show that s${(t)<0 on (0, 1) which in
view of (3.20) is equivalent to

s{(t)<
{

?({&1) - 1&t2
, t # (0, 1),

or using (3.19) it is the same as

t{&1 |
1

t

u&{

- 1&u2
du<

1

({&1) - 1&t2
, t # (0, 1). (3.29)

For u # [0, 1) we have the power series expansion

(1&u)&1�2= :
�

k=0

(&1)k \&1�2
k + uk=: :

�

k=0

ckuk,

where c0=1 and

ck=
(2k&1)!!

k! 2k =O(k&1�2)

for large k # N. Then (3.29) is equivalent to each of the following

t{&1 :
�

k=0

ck |
1

t
u2k&{ du<

1
({&1)

:
�

k=0

ck t2k,

t{&1 :
�

k=0

ck \1&t2k+1&{

2k+1&{ +<
1

({&1)
:
�

k=0

ck t2k,

and

t{&1

({&1)
> :

�

k=1

ck \ t{&1

(2k+1&{)
&

2kt2k

({&1)(2k+1&{)+ , t # (0, 1).

360 SAFF AND SIMEONOV



The last inequality follows from

1
({&1)

� :
�

k=1

ck
1

(2k+1&{)
, { # (1, 2]. (3.30)

To verify (3.30) we consider the function

F({)=
1

({&1)
& :

�

k=1

ck
1

(2k+1&{)
, { # (1, 2].

We have F({) � � as { � 1+ and

F $({)=&({&1)&2& :
�

k=1

ck(2k+1&{)&2<0, { # (1, 2].

So it is enough to show that F(2)�0. Using the same expansion as before
we obtain

|
1

t

u&2

- 1&u2
du= :

�

k=0

ck \1&t2k&1

2k&1 + , t # (0, 1)

which implies

:
�

k=1

ck
1

(2k&1)
=1+ :

�

k=1

ck
t2k&1

(2k&1)
+|

1

t

u&2

- 1&u2
du&

1
t

for t # (0, 1). Next for t # (0, 1) from (3.19) we get

|
1

t

u&2

- 1&u2
du&

1
t
=

1
t \

?
2

s2(t)&1+=
&t

- 1&t2+1
.

Taking a limit as t � 0+ in the last two equations we obtain

F(2)=1& :
�

k=1

ck
1

(2k&1)
=0.

For {=1 by (3.17) we get

s1(t)=(1�?)(ln(1�t)+ln(1+- 1&t2)), t # (0, 1],

a decreasing function on (0, 1]. This completes the proof of Lemma 3.3. K
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